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1. INTRODUCTION

Urban traffic congestion significantly impacts sustainable
transportation, leading to substantial economic losses due
to wasted fuel, increased travel times, and environmental
damage from heightened emissions (Schrank et al., 2019;
Litman, 2017). Two primary factors contribute to this
congestion: the self-interested routing decisions of drivers
and the limited resources of intersections. Drivers often
prioritize personal preferences over socially optimal traffic
flow, leading to inefficiency quantified by the Price of An-
archy (Roughgarden, 2007). On the other hand, intersec-
tions frequently act as bottlenecks, exacerbating conges-
tion (Papageorgiou et al., 2003). Each of these issues has
been studied extensively yet separately. The interaction
between intersection efficiency and driver behavior has
not been thoroughly examined. Efficient/inefficient inter-
sections can influence driver routing decisions and affect
traffic flow across the network. This raises an important
research question

whether we can address the inefficient routing problem
effectively via strategic intersection management.

Motivating Example. Braess’ Paradox is a well-known
example on the intriguing adaptation of traffic flow to
changing resources (Braess et al., 2005). Consider a unit
traffic flow over a network with two routes, as illustrated in
Fig. 1. Let cab(x) denote the travel cost for the edge from
the terminal a to the terminal b depending on the fraction
x of the flow passing through that edge. In the initial
network, the traffic flow is at user equilibrium (where no
driver has an incentive to change their routing decisions)
if the drivers evenly split across the routes s → v → t and
s → w → t. They have the travel cost of 1.5. However, in
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Fig. 1. Before (a) and after (b) adding the zero-cost edge.

the augmented network, the traffic flow is at equilibrium
if all flow goes through the path s → v → w → t. They
have the travel cost of 2 larger than 1.5 although the
augmented network has more resources with that extra
link. Therefore, adding (or removing) resources might have
negative (or a positive) impacts on traffic networks due to
the strategic adaptation of the traffic flow.

Contributions. We propose to strategically control the
(in)efficiency of intersections specific to the vehicles based
on their routing decisions to incentivize them to follow
the socially efficient ones. We use user equilibrium, also
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known as Wardrop or Nash equilibrium, as a solution
concept modeling how self-interested drivers would make
their routing decisions (Wardrop, 1952). We focus on au-
tonomous intersection management (AIM) for further effi-
cient use of the limited intersection resources by scheduling
the intersection usage at the vehicle-level, e.g., see the
survey (Zhong et al., 2020). For AIMs, we present strate-
gic priority-based scheduling that can (de)prioritize the
drivers’ intersection usage depending on the alignment be-
tween their routing decisions and socially optimal routing.

However, priority-based scheduling has a direct impact on
the total travel cost and, therefore, the socially optimal
routing, different from the (external) monetary incentives
such as tolls. This challenge necessitates new approaches
in the design of the priorities, i.e., incentives. As a first
step toward this goal, we focus on Pigou’s example (Pigou,
1920) to obtain explicit results, as in (Das et al., 2017).
Despite its simplicity, as illustrated later in Fig. 3, the
Pigou’s example is the worst network topology for efficient
routing (Roughgarden, 2007). We quantify the effective-
ness of the strategic control of intersections for efficient
routing in the Pigou’s network (e.g., see Propositions 1 and
2) and validate the performance via traffic simulations.
This approach paves the way to enhance transportation
sustainability while democratizing its usage across our
society via non-monetary solutions beyond tolls.

Related Works. There have been several attempts
for achieving socially efficient routing for self-interested
drivers. For example, Roughgarden (2007) showed that
we can achieve efficient routing with small increase in
the capacity for high-order nonlinear latency functions,
common in the Internet routing. However, such latency
functions are less relevant for transportation networks.

Auction-based schemes, tolling, and marginal cost pricing
can be effective in incentivizing the self-interested drivers
to follow socially efficient routes (Fleischer et al., 2004;
Cole et al., 2003). These methods rely on exchanging time
(i.e., travel cost) and money to influence behavior. How-
ever, such exchanges can cause inequalities among drivers,
by disproportionately burdening less wealthy individuals
(Gemici et al., 2018). Tokens can serve as an artificial
money specific to the traffic usage (Sayin et al., 2018; Censi
et al., 2019). However, when the tokens do not have any
value outside the traffic, they may not create incentives
like the actual money.

Alternatively, we can induce drivers to follow socially
efficient routing by controlling the information available
to them, as in the Bayesian persuasion framework (Ka-
menica and Gentzkow, 2011). Existing results often focus
on simplified traffic networks similar to Pigou’s example,
e.g., see (Das et al., 2017), due to the computational
complexity of large-scale solutions. Furthermore, compe-
tition among navigation applications may lead to full in-
formation disclosure, potentially resulting in suboptimal
outcomes (Tavafoghi et al., 2019).

On the other hand, intersections can often worsen the
congestion due to their limited resources. Classical traffic
signal control methods, e.g., see the survey (Wei et al.,
2019), typically rely on fixed or adaptive timing plans to
manage traffic flow. However, these methods often strug-
gle to adapt to real-time traffic conditions and varying
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Fig. 2. Autonomous Intersection Management.

demands. There is a critical need for dynamic intersection
management strategies.

Advancements in information and communication tech-
nologies (such as dedicated short-range or 5G cellular
communications) present opportunities to improve the
efficiency beyond these classical approaches via vehicle-
to-vehicle and vehicle-to-infrastructure communications
(Kenney, 2011; Weber et al., 2019). For example, in AIMs,
roadside units can autonomously schedule the intersection
usage based on the requests coming from the drivers, as
illustrated in Fig. 2 (Dresner and Stone, 2008). Generally,
simple-to-implement and effective heuristic solutions are
developed to address the computational complexity of
optimal scheduling. For example, Lin et al. (2019) have
presented a graph-based solution to ensure deadlock-free
intersection usage in AIMs.

Prioritizing traffic flow at intersections can significantly
enhance urban traffic networks, particularly benefiting
emergency services, public transportation, and high-
occupancy vehicles, thus reducing congestion and environ-
mental impact (Litman, 2009). For example, Zhang et al.
(2015) have presented priority scheduling mechanism for
AIMs with an event-triggered control procedure. Other
solutions include allowing higher-priority drivers to over-
take using global or local priority lists, with priority as an
inherent property of each driver (Harks et al., 2018; Hoefer
et al., 2011).

Notably, Scheffler et al. (2022) have introduced an edge-
priority model for competitive packet routing games. They
have provided an efficient algorithm for computing equi-
libria in symmetric games and prove the NP-hardness of
finding Nash equilibria in asymmetric games without the
uniqueness guarantee. The model can lead to potential
inefficiencies where players may repeatedly visit nodes to
gain higher priority. The model also does not consider
different priority levels within the same edges whereas our
strategic priority-based scheduling scheme assign priorities
at the vehicle level. Furthermore, the model includes a
simplified cost model for the routes with constant transit
times, meaning the travel cost does not depend on the con-
gestion, whereas we consider polynomial latency functions
that are more relevant for transportation networks.

Organization. The remainder of this paper is orga-
nized as follows. We introduce the strategic priority-based
scheduling and analyze its effectiveness for Pigou’s exam-
ple both analytically and numerically in Section 2. We
conclude the paper in Section 3 with some remarks.
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Fig. 3. Pigou’s example.

2. STRATEGIC PRIORITY-BASED SCHEDULING

In this section, we present and analyze the strategic
priority-based scheduling (SPBS). To this end, we first
focus on the First-Come-First-Serve (FCFS) scheme as
a benchmark to show the effectiveness of our approach.
In the FCFS, vehicles pass through intersections in the
order they arrive. This simple heuristic can improve the
efficiency of the intersection usage for AIM significantly
compared to the classical or adaptive traffic lights (Dresner
and Stone, 2008).

However, in the FCFS, each vehicle has the same priority
level. We can, alternatively, prioritize certain special ve-
hicles such as the ones in emergency services and public
transportation while scheduling their intersection usage
for the effective use of the traffic network (Litman, 2009).
Correspondingly, we propose to use the intersection usage
priorities to incentivize drivers to follow the socially opti-
mal routing for the effective use of the traffic network in
terms of the social travel cost.

Consider an AIM, as depicted in Fig. 2. In the SPBS
scheme, vehicles communicate with the roadside unit upon
entering a predefined communication zone by requesting
the intersection usage. Each vehicle has a dynamic score
based on their predefined priority level and the waiting
time since the request. For example, there can be three
priority levels: low, medium, and high. The roadside unit
sorts the requests received based on their scores and
schedule the intersection usage based on that order.

However, the priority-based scheduling can lead to incon-
sistency in the queue order and the physical locations of
vehicles in a lane. For instance, a high-priority vehicle
might be behind lower-priority ones on the same lane. This
can cause an issue if the high-priority vehicle moves to
the top of the queue when it is not in front of the lane.
We resolve this inconsistency by temporarily elevating the
scores of all vehicles in front of the high-priority vehicle
to infinity such that those vehicles move to the top of the
queue, as in (Zhang et al., 2015).

A key challenge for SPBSs is to determine the priorities
of the vehicles to incentivize socially optimal routing. This
challenge gets elevated for complex network topologies. As
a first step toward this goal, here, we focus on the Pigou’s
example due to its inefficiency in terms of the PoA metric
(as discussed in Section 2.1) and simplicity to show the
effectiveness of the scheme explicitly.

2.1 Case Study: Pigou’s Example

Fig. 3 provides an illustration of the Pigou’s example.
There are two terminals: source s and destination t. We
have a non-atomic unit flow from s to t going through two
edges called upper and lower routes. The upper and lower
edges, resp., have the edge cost functions given by

cu(xu) := 1 and cl(xl) := xn
l (1)

for some n ∈ N, where xu ∈ [0, 1] and xl ∈ [0, 1] denote
the flow passing through the associated edges. Note that
xu + xl = 1. Based on (1), the flow x = (xu, xl) leads to
the total edge cost of

C(x) := 1− xl + xn+1
l . (2)

Recall that a traffic flow is at user equilibrium if no
driver can unilaterally reduce their travel cost by changing
routes. In the following, we provide a formal description
of the user equilibrium.

Definition 1. (User Equilibrium). Consider a traffic net-
work with multiple routes. Let R denote the set of routes.
Let also ci(xi) denote the cost of the flow xi passing
through route i ∈ R. We say that a flow x = {xi}i∈R

is at user equilibrium provided that

ci(xi) ≤ cj(xj) ∀j ∈ R. (3)

In Fig. 4a, we provide illustrations of edge and node costs
for upper and lower routes. The left-most plot in Fig.
4a uses color-coded lines to show how the edge cost for
upper and lower routes change depending on the flow xl

for the quadratic cost of the lower edge, i.e., n = 2. The
(highlighted) intersection of the edge costs for upper and
lower routes would have corresponded to equilibrium if
there were only edge costs.

The travel cost of the drivers also includes the node costs
induced by the waiting times at intersections. For the
FCFS scheme, the flows coming from the upper and lower
routes have the node costs, resp., given by

du(xu) := w and dl(xl) := w (4)

for some w > 0 for all flow x. The drivers have approx-
imately the same average waiting time at intersections
irrespective of their routes due to the symmetric nature
of the FCFS, as illustrated in the middle of Fig. 4a. Then,
the total node cost is given by

DFCFS(x) := w ∀x. (5)

Based on the edge cost (2) and node cost (5), we define
the total travel cost for the upper and lower routes by

TFCFS(x) := C(x) +DFCFS(x). (6)

The right-most plot in Fig. 4a uses color-coded lines to
show how the travel cost for upper and lower routes change
depending on the flow xl for n = 2. Note that the right-
most plot is the shifted version of the left-most plot by
the average intersection waiting time w. The highlighted
intersection of the travel costs for the upper and lower
routes correspond to the unique equilibrium where all
flow goes through the lower route, i.e., xe = (0, 1).
Furthermore, the color-coded shaded area represents the
total travel cost TFCFS(x

e) = w + 1.

For the FCFS, the socially optimal routing minimizing the
total travel cost (6) is attained for x∗ = (1−x∗

l , x
∗
l ), where

x∗
l =

(
1

n+ 1

)1/n

. (7)

The total travel cost for the socially optimal routing is
given by

TFCFS(x
∗) = 1− x∗

l + (x∗
l )

n+1 + w ≥ w. (8)

To quantify the efficiency of a traffic network, we use the
Price-of-Anarchy (PoA) metric defined by
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Fig. 4. A comparison of the FCFS and SPBS schemes on edge cost (left-most plot), node cost (middle plot), and travel
cost (right-most plot) for upper and lower routes. The arrows illustrate how the costs change from FCFS to SPBS.
Here, xl ∈ [0, 1] denotes the flow through the lower route. The travel cost under the SPBS policy decreases (and
increases) for the upper (and lower) route. Such prioritization incentivizes some drivers to choose the upper route
at equilibrium (highlighted with the star symbol). Red and blue shaded areas, resp., represent the total travel costs
for the lower and upper routes at equilibrium.

PoA :=
Cost under Worst Equilibrium

Cost under Socially Optimal Routing
. (9)

For the FCFS scheme, we have

PoAFCFS =
1 + w

1 + w − n ·
(

1
n+1

)n+1
n

≤ 1 + w

w
(10)

for x∗
l as described in (7). For example, if the lower edge

has a linear cost, i.e., n = 1, then the optimal flow evenly
splits across the lower and upper routes, and x∗

l = 1/2.
Correspondingly, the PoA is given by (w + 1)/(w + 3/4),
which reduces to 4/3 if there were no node cost, i.e., w = 0.

Since all equilibrium flow goes through the lower route,
we propose to give high-level (or low-level) priority to the
vehicles in the SPBS scheme if they choose the upper (or
lower) route. We also consider that Pigou’s example is a
part of a larger network such that there also exists traffic
flow coming to the terminal t since intersections generally
involve more than two incoming edges, e.g., see Fig. 2. The
external flow has the medium-level priority. Then, the edge

costs are again as described in (1). On the other hand, the
vehicles now can face different average waiting times at
the intersection t depending on their priority levels. To
this end, we make the following assumption about the
node cost under the SPBS. We justify the assumption via
numerical simulations later in Section 2.2 (e.g., see Fig. 5).

Assumption 1. For the SPBS, the node costs of the upper
and lower routes, resp., are given by

du(xu) := w − p and dl(xl) := w + p (11)

for some p ∈ [0, w]. The changes in the flow x have tolerable
impacts on the average waiting time of the external flow.

Based on Assumption 1, the total node cost for the SPBS
is given by

DSPBS(x) := (1− xl) · (w − p) + xl · (w + p). (12)

Correspondingly, the total travel cost is given by

TSPBS(x) := C(x) +DSPBS(x). (13)

In Fig. 4b, we provide illustrations of edge and node costs
for the SPBS, similar to Fig. 4a. The right-most plot in
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Fig. 4b uses color-coded lines to show how the travel cost
for upper and lower routes change depending on the flow
xl for n = 2. The highlighted intersection of the travel
costs for the upper and lower routes correspond to the
equilibrium under the SPBS scheme.

For large p ∈ [0, w], we might have w + 1 − p < w + p.
Then, the travel costs for the routes do not intersect in
the graph and the travel cost for the upper route is strictly
less than the cost for the lower one. In such cases, all flow
goes through the upper route at equilibrium.

In the following, we characterize the equilibrium for the
SPBS scheme.

Proposition 1. Under Assumption 1, for the SPBS, the
unique equilibrium flow is xe = (1− xe

l , x
e
l ), where

xe
l =


(1− 2p)1/n if p ∈ [0, 1/2)
0 if p ≥ 1/2

(14)

and the equilibrium travel cost is given by

TSPBS(x
e) = w + 1− p. (15)

Proof. The proof follows from solving

w + 1− p = w + (xe
l )

n + p (16)

for xe
l ∈ [0, 1], as illustrated in the right-most plot of

Fig. 4b, if a solution exists. A solution does not exists
if w + 1 − p < w + (xl)

n + p for all xl ∈ [0, 1]. Then, the
lower route gets dominated by the upper route and all flow
goes through the upper one. Furthermore, the color-coded
shaded areas in that plot correspond to the equilibrium
travel cost.

Remark 1. The equilibrium travel cost for the SPBS is
strictly less than the one for the FCFS when p > 0.
Furthermore, different from the FCFS, non-zero flow goes
through the upper route, i.e., xe ̸= (0, 1) for p > 0. This
shows that the SPBS incentivizes drivers to follow socially
efficient routes to a certain extent.

Remark 2. The parameters w ≥ 0 and p ∈ [0, w] depend
on the underlying intersection topology and the external
flow coming to the intersection. The parameter p also
depends on the scores assigned based on the priority levels
in the SPBS scheme. Therefore, in the SPBS, we can
determine the equilibrium flow (14) by controlling p to a
certain extent. For example, we can aim to keep xe

l ≥ 1/2
such that the majority of the flow coming from s to t have
low-level priority so that the impact on the external flow’s
node cost is at a tolerable level.

In the following, we characterize the socially optimal flow
for the SPBS scheme.

Proposition 2. Under Assumption 1, for the SPBS, the
socially optimal flow is x∗ = (1− x∗

l , x
∗
l ), where

x∗
l =





1− 2p

n+ 1

1/n

if p ∈ [0, 1/2)

0 if p ≥ 1/2

(17)

and the PoA is given by

PoASPBS =
1 + w − p

1 + w − p− n ·


1−2p
n+1

n+1
n

. (18)

Proof. We can obtain (17) by solving
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Fig. 5. Simulation results for Pigou’s example under the
FCFS and SPBS schemes for the travel (node+edge)
cost of upper and lower routes.

min
xl∈[0,1]

{1 + w − p− (1− 2p)xl + (xl)
n+1} (19)

due to (2), (12) and (13), and obtain (18) based on (9) and
(15).

2.2 Numerical Simulations

We conduct numerical simulations using Eclipse SUMO
(Simulation of Urban MObility), a traffic simulation
package designed for large road networks (Lopez et al.,
2018). The setup includes three 300-meter incoming edges
(one of which correspond to the external flow) and one
outgoing edge. The unit flow rate is set to 0.15 vehicles
per second while the external flow is half as much. Vehicle
departure times follow a Poisson process with a rate
parameter 4.5. In the SPBS scheme, we choose the priority
scores according to

fi(t, s) := t× s2i (20)

where t is the time since the i-th vehicle’s request at 100
meters from the intersection, and si ∈ {1, 1.5, 2} represents
low, medium, and high priority levels, respectively. We
create a global queue using these scores in a descending
order and let vehicles pass based on the global queue order
and calculated node costs based on queue time.

We perform 100 independent trials for each 0.01 step from
0.0 to 1.0. Each trial runs for 3600 seconds with a step size
of 1, using the same type of vehicles to observe the effect of
priority-based scheduling more explicitly. To simulate the
travel cost, we add edge and node costs as in Fig. 4b, while
scaling the edge costs by 80. We plot the average travel
costs for upper and lower routes for both FCFS and SPBS
scheme in Fig. 5. We highlight the resemblance between
Fig. 5 and the right-most plot in Fig. 4b. The resemblance
justifies the node cost mode for the SPBS in Assumption
1, especially when the flow through the lower edge is larger
than xl ≥ 0.5, as discussed in Remark 2.

3. CONCLUSION

In this paper, we proposed strategic control of intersections
via priority-based scheduling to induce desired driver be-
havior for efficient traffic routing. Our analytical model
(supported with numerical simulations) demonstrated the
effectiveness of the strategic priority-based scheduling for
the Pigou’s example by incentivizing certain percentage of
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the flow to go through the dominated route while reducing
the overall travel cost.

Future research directions include design and analysis
of the strategic priority-based scheduling for arbitrary
network topologies, and develop data-driven solutions such
as reinforcement learning (as in (Huang et al., 2023))
to learn optimal dynamic prioritization for arbitrary and
multi-intersection networks.
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