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1. INTRODUCTION

The increasing popularity of Artificial Intelligence (AI) is
transforming human-machine interaction, particularly in
cyber-physical systems (CPS) where physical components
integrate with computational intelligence. These complex
systems require a deep understanding of human-AI inter-
actions to achieve optimal performance and ensure safety
(Shi et al., 2011; Humayed et al., 2017). A major challenge
lies in the vulnerability of traditional learning algorithms
to manipulation by strategically advanced agents like AI
(Huang and Zhu, 2019; Vundurthy et al., 2023; Arslantas
et al., 2024). This raises a critical question: how much can a
strategic AI manipulate, assist, or guide an (human) agent
within these complex CPS to achieve a more favorable
outcome?

To tackle this problem, we take a control-theoretic ap-
proach, examining the repeated play of general-sum
normal-form games between a human agent and a strategic
AI agent. Our goal is to investigate how the AI agent can
strategically influence the human’s learning behavior to
achieve a more favorable outcome. This outcome could be
maximizing the joint payoff for both agents, or it could
be maximizing the AI’s own payoff at the expense of the
human. We model the human agent’s behavior using the
Experience-Weighted Attraction (EWA) algorithm, which
integrates belief learning and reinforcement learning mod-
els, making it particularly well-suited for capturing the
complexity of human decision-making in strategic interac-
tions. Unlike simpler models that focus solely on beliefs
or received payoffs, EWA can account for both aspects,
leading to a more comprehensive understanding of human
behavior in games. The human agent employs the EWA

algorithm with certain preselected parameters that may
vary during the game. The AI agent, being strategically
sophisticated, is aware of the human agent’s use of the
EWA algorithm. We show that the AI agent can use this
awareness to control the human agent’s learning behavior.
By modeling the problem as a Markov Decision Process
(MDP), the AI agent can maximize the discounted sum
of payoffs over an infinite horizon. The main challenge of
this approach is the continuous state space of the modeled
MDP. To address this, we propose a quantization-based
approximation method. This method approximates the
MDP with a finite state version, allowing us to apply
dynamic programming techniques. Note that we consider
a simple AI as a proof of concept. However, by employing
function approximation methods, we can explore more
complex scenarios with more powerful AI agents.

Our work builds upon the existing research on strategizing
against learning agents that has been a recent focus in the
literature. Dong and Mu (2022) studied fictitious play in
2×2 games involving AI-human interactions, where the AI
adopts fictitious play, demonstrating vulnerability results
based on the game matrix’s payoff values. Vundurthy
et al. (2023) examined alternating fictitious play showing
that a strategically sophisticated agent can leverage game
and opponent knowledge by solving a linear programming
problem to drive the opponent towards a more favorable
mixed-strategy profile. Deng et al. (2019) demonstrated
that sophisticated agents can secure equilibrium values
against a class of no-regret learners.

Recent work by Arslantas et al. (2024) has focused on
the vulnerability of Q-learning, proposing a stochastic
control-based solution that uses the agents’ Q-values as
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the system’s state. They studied iteratively played normal-
form games among multiple strategic agents and naive
Q-learners. Similar to our work, they handle the contin-
uum state space with a quantization-based approximation
scheme both analytically and numerically. While Arslantas
et al. (2024) and our work share similar approaches in an-
alyzing the vulnerabilities of learning dynamics, our paper
addresses more generic learning dynamics that encompass
a wider range of learning rules. Furthermore, in contrast to
Arslantas et al. (2024), which assumes complete knowledge
for the strategic agent, we demonstrate that our results
hold even when the perfect knowledge assumption is re-
laxed, as shown in our numerical results.

Additionally, there is significant literature on the falsifica-
tion of reward functions in reinforcement learning (Huang
and Zhu, 2019, 2021; Zhang et al., 2020). However, the un-
derlying game structure, which prohibits the manipulation
of rewards and potentially aligned objectives, distinguishes
our vulnerability analysis of learning dynamics from this
body of work.

These studies in the vulnerability of learning dynamics lit-
erature rely on specific assumptions about the type of the
opponent’s learning rule. Our work addresses this limita-
tion by employing EWA model, introduced in the seminal
work of Camerer and Hua Ho (1999) for human behavior
in cyber-physical human systems (CPHS). Depending on
the choice of EWA parameters, EWA encompasses many
widely used and studied learning algorithms from the class
of belief learning and reinforcement learning as illustrated
in Figure 1, such as fictitious play, logit learning or Q-
learning (Pangallo et al., 2022). This versatility makes
EWA more suitable for modeling human behavior com-
pared to using belief learning and reinforcement learning
separately. Therefore, EWA provides a comprehensive de-
scription of human agents across a wide range of games
(Pangallo et al., 2022; Gracia-Lázaro et al., 2012). To
the best of our knowledge, our work is the first to lever-
age EWA in the context of human-AI interaction within
CPHS.

The paper is organized as follows: In Section 2, we present
the interaction between human and strategic AI agents
as a game and introduce their respective behavioral rules:
EWA for the human agent and a stochastic control ap-
proach with a quantization-based solution for the AI agent.
In Section 3 and 4, we demonstrate our results in various
types of games and conclude the paper, respectively.

2. STRATEGIC AI AND HUMAN INTERACTION

Consider a normal-form game G played over stages k,
defined by the tuple ⟨A,B, u, u⟩. In this game, A and B are
the finite action sets for the strategic AI agent and human
agents, respectively. The payoff functions u : A × B → R
and u : A × B → R represent the payoffs received by the
AI agent and the human agent.

2.1 Human Agent

The human agent follows the EWA learning algorithm,
which updates two variables at each stage. The first
variable, Nk, represents the experience and is updated as
follows

Fig. 1. An illustration of the EWA learning dynamics based
on the parameters τ , α, κ, and δ. Belief-based learning
dynamics, represented with a solid line, correspond to
the case where δ = 1. Payoff-based learning dynamics
(i.e., reinforcement learning) are depicted as a shaded
area for δ = 0.

Nk = (1− α)(1− κ)Nk−1 + 1, (1)

where α ∈ [0, 1], κ ∈ [0, 1] and the initial experience vector
N0 = 0. The term (1 − α)(1 − κ)Nk−1 discounts the past
experiences, and the increment by one ensures that the
experience always increases. The second variable, Zk(b)
demonstrates the attraction of the agent for action b and
is updated as

Zk(b) =
(1− α)Nk−1Zk−1(b) +

[
δ + (1− δ)I{b=bk}

]
u(·, b)

Nk
,

(2)

where I{b=bk} denotes the indicator function and δ ∈ [0, 1]
is attraction controller parameter determining the weight
of the updates. For example, when δ = 0, only the
attractions for the played actions are updated. Conversely,
when δ = 1, all actions are updated with equal weight. The
initial attraction vector Z0(b) can be chosen arbitrarily.

Fact 1. After some stages of the game, Nk tends to con-
verge toward its fixed-point value N∗ = 1/(1− (1−α)(1−
κ)) provided that (1−α)(1−κ) < 1 (Pangallo et al., 2022).

Based on Fact 1, we can unify the experience and attrac-
tion updates in the following form

Zk(b) = (1− α)Zk−1(b)

+ [1− (1− α)(1− κ)]
[
δ + (1− δ)I{b=bk}

]
u(·, b).

(3)

The human agent, given his attraction function Zk(b),
responds according to the softmax function:

σ(Zk)(b) =
exp(Zk(b)/τ)∑
b̃∈B exp(Zk(b̃)/τ)

∀b ∈ B, (4)

for some temperature parameter τ > 0 controlling the
exploration and σ(Zk)(b) ∈ (0, 1] denotes the probability
that the agent takes action b ∈ B.

2.2 Strategic AI Agent

The goal of the strategic AI agent is to maximize the
discounted sum of payoffs it can collect over the infinite
horizon, i.e.,
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max
{ak}∞

k=0

E

[ ∞∑
k=0

γku(ak, bk)

]
, (5)

where the expectation is taken with respect to the ran-
domness on the action ak and bk ∼ σ(Zk), and γ ∈ (0, 1)
is some discount factor.

The strategic AI agent, equipped with knowledge of the
underlying game structure and the human agent’s behav-
ior evolving according to EWA, utilizes this information to
solve (5). Specifically, the strategic AI agent observes the
game history {a0, b0, . . . , ak−1, bk−1} and uses an internal
attraction function tracker to monitor the human agent’s
attraction function. It can then reformulate the problem as
a fully observable MDP, where the state space encompasses
all possible Z-vectors from (3). For strategic AI agent the
objective (5) becomes to find the best policy for MDP M
characterized by the tuple ⟨Z,A, r, p, γ⟩ where Z ⊂ R|B|

is the compact set of states, A is the action set of actions
as in G, the reward function r : Z × A → R is given by
r(z, a) = E[u(a, b)] that b ∼ σ(Z), p(·|·) is the transition
kernel for Z-vectors evolving according to (3) and γ ∈ (0, 1)
is discount factor. Therefore, we can rewrite the goal of the
strategic AI agent as follows

max
{ak}∞

k=0

E

[ ∞∑
k=0

γkr(zk, ak)

]
, (6)

where the expectation is taken with respect to randomness
on (zk, ak).

Fact 2. Since the set of all possible Z-vectors is a Polish
space, being a compact subset of R|B|, and the action set
A is finite and state-invariant, there exists an optimal
stationary policy π : Z × A → [0, 1] for M (Puterman,
2014, Theorem 6.2.12).

Although there exists an optimal stationary policy, finding
this policy for a strategic AI agent is challenging due to the
continuum of the state space. For instance, when the EWA
parameters are set to α > 0, τ > 0, δ = 1, and κ = 0, the
human agent follows smoothed fictitious play, and the Z-
vector becomes a probability measure for the belief of the
opponent’s strategy, i.e., Z =

∏
|B|[0, 1]. Conversely, when

δ = 0, the human agent adopts reinforcement learning
dynamics. For a specific type of algorithm, such as Q-
learning, the Z-vector takes values within a continuum
interval, i.e., Z =

∏
b∈B

[
Qb

min, Q
b
max

]
. Due to this con-

tinuum state space, the strategic AI agent cannot directly
use dynamic programming methods such as value or policy
iteration. These methods rely on Bellman equations that
involve taking the maximum or expectation over the next
states, which becomes intractable with infinitely many
possible Z-vectors. Therefore, the strategic AI agent needs
to approximate the state space to a finite set.

To approximate the MDP with a finite state space, the
strategic AI agent can employ various methods from the
literature. For example, it can leverage the linear program-
ming solution of MDPs by selecting a basis to reduce the
dimension of states, thus reducing the state space to a
finite one (De Farias and Van Roy, 2003, 2004). Similarly,
it can use approximate value iteration or policy iteration
that utilizes similar preselected basis function methods
(Tsitsiklis and Van Roy, 1996; Farahmand et al., 2010).
Furthermore, it can employ any universal approximating

Fig. 2. The illustration demonstrates how the strategic
AI agent and the human agent take actions during
the repeated play of G. The dashed lines indicate
observations from the previous stage.

Algorithm 1 Strategic AI Agent

input: πi and Z0

for each stage k = 0, 1, . . . do
observe (ak−1, bk−1)
\\ Track the state

if k > 0 then update Ẑi
k−1 to Ẑi

k according to (3)
\\ Predict the model
if k > 0 then update λk−1 according to (9)
find the best model type ℓ
take action ak ∼ πℓ(zk)
receive reward rk = r(zk, ak)

end for

Fig. 3. An algorithmic representation demonstrate how the
strategic AI agent take actions in the repeated play
of G.

architecture for the value function, as in neuro-dynamic
programming, to find the optimal policy (Bertsekas and
Tsitsiklis, 1996).

2.3 Approximation of the MDP

In this work, we propose a quantization-based approxi-
mation to tackle the continuum state space. Consider a
quantization mapping Φ : Z → Z̃, where Z̃ ⊂ Z. The set
Zz̃ := {z ∈ Z : Φ(z) = z̃} satisfies Zz̃ ∩ Zz̃′ = ∅ for all
z̃ ̸= z̃′, and

⋃
z̃∈Z̃ Zz̃ = Z.

The strategic AI agent can use this quantization-based

approach to approximate M as M̃, characterized by the
tuple ⟨Z̃,A, rZ̃ , p̃, γ⟩. Here, Z̃ is the finite range space of
the quantizer Φ and the state space of the approximated

MDP M̃. A is the set of finite actions as described in
G. The reward function rZ̃ : Z̃ × A → R is given by

rZ̃(z̃, a) = E[u(a, b)] where b ∼ σ(Z̃). The transition
probabilities are defined by

p̃(z̃+|z̃, a) =
∫

Zz̃+

p(dz+|z̃, a). (7)
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Fig. 4. The evolution of the empirical averages of the action profiles for the human agent vs human agent and strategic
AI agent vs human agent in coordination game for perfect and imperfect knowledge.

We can rewrite the goal of the strategic AI agent in finite
state space approximation as

max
{ak}∞

k=0

E

[ ∞∑
k=0

γkrZ̃(z̃k, ak)

]
, (8)

where z̃k = Φ(zk) is the quantized state at stage k. Hence,
the strategic AI agent can adopt dynamic programming
methods to obtain the optimal stationary policy.

Remark 1. The error between the value functions of

M and M̃ can be quantified as in (Arslantas et al.,
2024, Proposition 3) thanks to the quantization adopted
by strategic agent and softmax response of the human
agent. By increasing the quantization level, or alterna-
tively, adopting another MDP approximation structure the
strategic agent can increase its performance.

2.4 Model Prediction

In real-world scenarios, the AI agent might not have
complete knowledge about the specific EWA parameters
the human agent employs. Here, we consider a situation
where the AI agent is aware of a finite set of possible EWA
types that the human agent could adopt, but is unsure of
the exact one.

To address this uncertainty, the AI agent pre-computes

the optimal policy, πi for each approximate MDP {M̃i =

⟨Z̃i,A, rZ̃i , p̃i, γ⟩}Ni=1 modeling different EWA types. The
strategic AI agent maintains a belief vector, λk ∈ ∆(N) at
each stage k where ∆(N) represents the N -dimensional
simplex. This vector represents the AI agent’s current
belief about the probability of each EWA type. The
element λi

k denotes the probability assigned to the human
agent having type i at stage k.

The strategic AI agent then uses its internal attraction
function to track the state, Ẑi

k, and the mixed strategy
of the human agent, βi

k, for each EWA type i at stage k.
After observing the action taken by the human agent, bk,
the strategic AI agent updates its belief as follows

λk+1 =
λT
k βk

∥λT
k βk∥

, (9)

where βk ∈ RN is defined as βk := {βi
k(bk)}Ni=1 and βi

k(bk)
is the probability of taking action bk under the mixed
strategy βi

k. Once the belief vector is updated, the AI agent

selects a policy to play in the next stage. It chooses the
policy that is optimal for the most likely EWA type based
on the updated belief. Simply the strategic AI agent plays
according to the strategy that best aligns with the human
agent it believes is most probable, i.e., πk = πℓ where
ℓ = argmaxj λ

j
k.

3. ILLUSTRATIVE EXAMPLES

We examine the performance of a strategic AI agent in
CPHS under three distinct scenarios: coordination, anti-
coordination and zero-sum games. We further illustrate
the case where the AI agent does not have perfect knowl-
edge about the EWA parameters of the human agent and
constructs a belief for a finite set of types. As a proof of
concept, we choose two possible EWA types. To model the
human agent, we set the EWA parameters to α1 = 0.1,
τ1 = 0.01, κ1 = 0.5, and δ1 = 0.5. We specifically choose
κ1 = 0.5 and δ1 = 0.5 to ensure that the EWA model does
not align strictly with belief or reinforcement learning,
thus effectively representing the human agent. For the
second type of EWA we determine the parameters as
α2 = 0.1, τ2 = 0.01, κ2 = 0.6, and δ2 = 0.4. We choose the
forgetting factor and exploration rate for both of the types
according to the payoffs in the game such that the naive
agent gives importance to the recent actions and explore
sufficiently. For the strategic AI agent, we set γ = 0.8.
Furthermore, we quantize each Z-vector to 100 uniform
intervals. In all scenarios, we first illustrate the cases where
both agents adopt the same EWA learning dynamics, i.e.,
human agent vs. human agent. After establishing these
benchmarks, we demonstrate the case where the strategic
AI agent employs dynamic programming with perfect and
imperfect knowledge.

Table 1. Coordination game between AI agent
(row player) and human agent (column player)

D S

G (0.8, 0.8) (0.2, 0.1)

R (0.1, 0.2) (0.5, 0.5)

Coordination Game: Consider a traffic intersection
scenario where an AI agent controls the traffic light and
a single driver is present. The AI agent has two actions:
green (G) and red (R), to control the flow of traffic, while
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Fig. 5. The evolution of the empirical averages of the action profiles for the human agent vs human agent and strategic
AI agent vs human agent in anti-coordination game for perfect and imperfect knowledge.

Fig. 6. The evolution of the empirical averages of the action profiles for the human agent vs human agent and strategic
AI agent vs human agent in zero-sum game for perfect and imperfect knowledge.

the driver also has two actions: drive (D) or stop (S). The
payoffs, as illustrated in Table 1, represent the effectiveness
and safety of the different actions, encouraging both agents
to find an optimal strategy for coordination.

When the agents follow EWA learning dynamics, they
more frequently choose the joint action profile where the
traffic light is green and the driver drives. However, when
the strategic AI agent leverages its complete knowledge,
this frequency increases as illustrated in Figure 4. Further-
more, the strategic AI drives the human agent toward a
more favorable joint action where the traffic light is green
but the driver stops, enhancing either traffic flow or safety.
We observed an increase in the utility achieved by the
strategic agent, rising from 0.3295 to 0.4387 under per-
fect knowledge, and to 0.3678 under imperfect knowledge.
Similarly, the human agent’s utility increased from 0.3268
to 0.4081 and 0.3291, respectively.

Table 2. Anti-coordination game between AI
agent (row player) and human agent (column

player)

H M

H (−1,−1) (1,−0.5)

M (−0.5, 1) (0.5, 0.5)

Anti-coordination Game: Imagine a market competi-
tion scenario where a strategic AI agent and a human
agent represent competing companies, each deciding on
their strategies for a new product launch. These companies

have two possible actions: targeting the high-end market
(H), which consists of fewer customers but yields higher
profits, or targeting the mass market (M), which has a
larger customer base but offers lower profits. The matrix
game illustrating this scenario is shown in Table 2.

When the agents follow EWA dynamics, they tend to
target the mass market, as depicted in Figure 5. However,
when a strategic AI agent is involved, it can manipu-
late the joint actions such that it targets the high-end
market to achieve more favorable profits while driving
the human agent to target the mass market. In addition,
the strategic AI agent’s utility increases from 0.2097 to
0.3944 and 0.3934 in perfect and imperfect knowledge, re-
spectively. Conversely, the human agent’s utility decreases
from 0.2391 to -0.5014 and -0.5016.

Table 3. Zero-sum game between AI agent (row
player) and human agent (column player)

E M

E (−1, 1) (1,−1)

M (1,−1) (−1, 1)

Zero-sum Game: Consider a cybersecurity scenario in-
volving a strategic AI agent (attacker) attempting to in-
filtrate a system and a human agent (defender) trying to
protect it. The attacker has two options: sending deceptive
emails to trick users into revealing sensitive information
(E) or using malicious software to gain unauthorized access
(M). The defender can counter these actions by strength-
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ening email filters (E) or improving the malware detection
system (M). This cybersecurity problem can be character-
ized as a zero-sum game, as depicted in Table 3.

In this game scenario, the strategic AI agent can leverage
its knowledge to increase the frequency of mismatched
joint actions. This result is illustrated in Figure 6 where
the AI agent chooses M and the human agent chooses
E more frequently. Furthermore, the strategic AI agent’s
achieved utility increases from 0.0162 to 0.3599 and 0.2509
for the perfect knowledge and imperfect knowledge cases,
respectively.

4. DISCUSSION

We investigated how a strategic AI agent can strategize
against a human agent modeled using EWA, assuming the
strategic AI agent understands the human agent’s learning
dynamics and the underlying game structure. We tack-
led this problem from a control-theoretical perspective,
considering the human agent’s algorithm as a dynamical
system with states represented by the human agent’s at-
traction functions. The strategic AI agent’s objective was
formulated as an MDP with a continuous state space. To
manage this complexity, we introduced a quantization-
based approximation to reduce the state space dimension-
ality, allowing the MDP to be solved through dynamic
programming. We also investigated the cases where the
strategic AI agent has imperfect knowledge about the
human agent and proposed a model prediction framework
against the finitely many EWA types. Our numerical re-
sults showed that the strategic AI agent can manipulate
the human agent to achieve favorable outcomes for itself
in both perfect and imperfect knowledge cases.

This research lays the groundwork for understanding the
vulnerabilities of the human agents when confronted by
strategic AI agents in CPHS from a control-theoretical
perspective. This insight can help us design more robust
algorithms for practical applications or improve the per-
formance of CPHS. Future research directions include (i)
limiting the capabilities of strategic AI agents, (ii) investi-
gating how strategic AI agents without perfect knowledge
can learn the dynamics of human agents, (iii) exploring
alternative approximation methods, (iv) applying these
approaches to more complex real-world scenarios, and (v)
designing more robust learning dynamics against strategic
agents to robustify the human behavior in CPHS.
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