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Abstract. In this paper, we address the problem of obtaining opti-
mal deceptive signaling strategies between two agents, a sender and a
receiver, over an ideal channel. Different from classical (cooperative)
communication settings, here, the agents select their strategies under two
different cost measures. For the case when these costs are quadratic, we
analyze the Stackelberg equilibrium, where the sender leads the game by
committing his/her strategies beforehand. This is an infinite-dimensional
optimization problem, where the sender needs to anticipate the receiver’s
reaction while selecting his/her policy within the general class of stochas-
tic kernels. The specific model we adopt for the underlying information
of interest is a discrete-time Markov process generated by a vector-valued
linear dynamical system, and at each instant, the information is a real-
ization of a square integrable multivariate random vector. Over both
finite and infinite horizons, we show the optimality of memoryless, “lin-
ear” signaling rules when the receiver uses a Kalman filter to estimate
its information of interest. We develop algorithms that deliver the opti-
mal signaling strategies. Numerical analysis shows that the performance
of the sender degrades slightly when the receiver uses the best nonlinear
estimator even when the information of interest is a Rademacher random
variable rather than Gaussian.

Keywords: Stackelberg games · Security · Signaling · Deception ·
Semi-definite programming · Infinite-horizon

1 Introduction

We have trust in and rely on the power of informed decisions more and more as
we are always observing its repeatedly proven empirical effectiveness. Therefore,
intelligent agents seek to make the best decisions based on the information avail-
able to them. This yields that there is a direct relation between how an agent
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would act and the information available to him/her. By controlling/designing the
information available, it can be possible to control/manipulate the actions of an
intelligent agent. In an adversarial environment, the ability to control others’
actions can play a pronounced role on the outcome.

Particularly, asymmetry of information is common due to the asymmetry of
agents in adversarial environments. Agents can have access to certain informa-
tion private to them. For example, a defender could have access to the state of a
dynamical system, or the outputs of certain sensors monitoring the system, which
an attacker would not have access to. Correspondingly, this asymmetry enables
agents to control how much the other agents could know about the information
private to them. To this end, the agent who has access to the private information
could share/signal it strategically with the other agents in order to control their
perception, and correspondingly to control the others’ decisions/actions.

Recently, deception applications have attracted extensive attention in the
field of security. A survey of these studies can be found in [12]. For example,
obfuscation techniques can be used to corrupt the information available to other
agents in order to deceive them [5,8,21]. However, strategic information trans-
mission to control the others’ perceptions can be viewed as a special type of
deception that is based on signaling. It differs from the previous studies based
on obfuscation techniques. Particularly, here, decision makers who have access
to private information craft it strategically before sharing it with the others in
order to control the others’ perceptions rather than corrupting it.

Furthermore, in computer security, honey-X based defense strategies are also
used widely to make the threats believable that honey-X is the real system
rather than a trap [19]. For example, in [4], the authors have studied honeypots
within the framework of binary signaling games. However, how a honeypot can
be crafted so that it mimics a real system, or vice versa, is viewed as binary
signals instead of addressing the crafting mechanism. On the other hand, here,
our goal is to address the optimal crafting strategy within the general class of
stochastic kernels for information of interest with continuum supports.

Deception applications have also attracted extensive attention in the field
of communication and control. In [13], the authors study strategic information
transmission of multivariate Gaussian information over an additive Gaussian
noise channel for quadratic cost functions that are misaligned by a commonly
known bias term under the solution concept of Nash equilibrium [3]. In [1] and
[7], the authors study strategic information transmission for the scenarios where
the bias term is private to the information provider, under the solution concept
of Stackelberg equilibrium [3] where the information provider is the leader.

Previously, we have addressed strategic information transmission for mul-
tivariate Gaussian information in dynamic environments over a finite horizon
[14,15,18]. For a discrete-time Gauss Markov process, we have shown in [14]
the optimality of linear signaling rules within the general class of measurable
policies and provided a semi-definite programming (SDP) based algorithm to
compute the optimal signaling strategies numerically. For a non-cooperative lin-
ear quadratic Gaussian control problem, we have addressed in [15,18] derivation
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of the optimal linear signaling strategies for a sensor who seeks to deceive a
private-type controller in the settings where the distribution over the private
type of the controller is, respectively, known or not known.

Different from previous studies reviewed above, in this paper, our goal is to
address strategic information transmission for general multivariate distributions
in dynamic environments over both finite and infinite horizons. We consider
the scenario where there are two decision makers: a sender and a receiver. The
sender has access to two separate multi-dimensional information: information of
interest and some private information. The receiver seeks to learn the information
of interest through a Kalman filter [2]. However, the sender wants to deceive
the receiver to perceive the information of interest as that private information
with respect to another quadratic cost measure. To this end, at each instant,
the sender can construct a multidimensional signal based on all the previous
information through a stochastic kernel map.

Under the solution concept of Stackelberg equilibrium, where the sender is
the leader, we show that linear signaling strategies are optimal within the gen-
eral class of stochastic kernels. To this end, we show that the problem faced
by the sender depends only on the covariance of the linear estimate. We can
obtain certain upper and lower bounds on that covariance in terms of linear
matrix inequalities. We show that for any matrix that satisfies these bounds,
there exists a linear signaling strategy such that the covariance of the linear
estimate is equal to that matrix. This enables us to formulate an equivalent
semi-definite programming (SDP) problem to compute the optimal signaling
numerically. However, over the infinite horizon that equivalent SDP problem is
also infinite dimensional. Therefore, we prove the existence of a solution for that
infinite-dimensional SDP problem and formulate a way to compute the linear sig-
naling rules that attain a performance within any ε-neighborhood of the optimal
solution. We also conduct numerical analyses to examine how much the players’
performances change if the receiver can use the best nonlinear estimator.

We note that in [7], the authors address how to signal Gaussian information
to deceive a Kalman filter with respect to myopic quadratic objectives. Our
study differs from [7] by addressing optimal signaling for general distributions
with respect to quadratic objectives over finite as well as infinite horizons.

Our main contributions are therefore as follows:

– We show that the infinite-dimensional signaling problem, to deceive a Kalman
filter, can be transformed into an equivalent SDP problem.

– We show the optimality of linear signaling strategies within the general class
of stochastic kernels.

– We show the existence of a solution for the equivalent SDP problem over the
infinite horizon and provide a method to approximate it.

The paper is organized as follows: In Sect. 2, we formulate the deceptive
signaling problem over finite and infinite horizons. In Sects. 3 and 4, we compute
the optimal signaling strategies over finite and infinite horizons, respectively. In
Sect. 5, we provide illustrative numerical examples. We conclude the paper and
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identify possible future research directions in Sect. 6. One appendix includes a
proof of a lemma provided.

2 Problem Formulation

Consider a non-cooperative communication setting over an ideal channel between
two decision makers: a sender (PS) and a receiver (PR). Over a discrete-time
scale k = 1, 2, . . ., only PS gains access to the underlying information of interest
and some private information. At instant k, the information of interest and
the private information are, respectively, realizations of m-dimensional random
vectors xxxk and θθθk. The random vectors are defined on a common probability
space (Ω,F ,P), where Ω is the outcome space, F is a proper σ-algebra, and P
is the probability measure, i.e.,

(Ω,F ,P) xxxk−→ (X ,Bm,Px,k), (1)

(Ω,F ,P) θθθk−→ (X ,Bm,Pθ,k). (2)

where X ⊂ R
m. We note that X is not necessarily compact and it can be as large

as the entire R
m, e.g., the support of a multivariate Gaussian distribution. The

information of interest and the private information evolve over the discrete-time
scale k = 1, 2, . . ., through first-order auto-regressive recursions as1

xxxk+1 = Axxxk + wwwk, (3)
θθθk+1 = B θθθk + vvvk, (4)

where A,B ∈ R
m×m, and xxx0 = θθθ0 = 0m. Each noise parameter wwwk or vvvk has

zero-mean and is independent of all previous noise parameters, i.e., www1:k−1 and
vvv1:k−1; however, wwwk and vvvk can be correlated.

Let H(m) denote the Hilbert space of all square integrable m-dimensional
random vectors with inner product:

(xxx,yyy) =
∫

Ω

xxx(ω)′yyy(ω)P(dω). (5)

Correspondingly, we use the induced norm, i.e., ‖xxx‖ =
√

(xxx,xxx). We consider
the scenarios where xxxk, θθθk ∈ H(m) for all k, and ‖xxxk‖ and ‖θθθk‖ are uniformly
bounded for all k, i.e., there exist Mx,Mθ ∈ R such that ‖xxxk‖2 ≤ Mx and
‖θθθk‖2 ≤ Mθ for all k.

In the dynamic environment, each decision maker makes a decision at each
instant, and has perfect recall while selecting his/her2 strategy3 according to a
1 For notational simplicity, we consider time-invariant matrices A and B; however, the

results could be extended to the time-variant case rather straight-forwardly.
2 We use the pronouns “he” and “she” while referring to PS and PR, respectively,

only for clear referral.
3 We use the terms “strategy”, “signaling/decision rule”, and “policy” interchange-

ably.
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distinct cost measure. For each instance of the underlying information, e.g.,
xxxk ∈ H(m), PS selects his strategy ηk(·) that is a “stochastic kernel” from
H(2km) to H(2m) such that the signal sent, sssk ∈ H(2m), is a square-integrable
2m-dimensional random vector, and is given by

sssk = ηk(xxx1:k, θθθ1:k) a.e. over X × X . (6)

Let us denote the set of all such signaling rules by Υk, i.e., ηk ∈ Υk. On the other
side, after signal sssk ∈ H(2m) is received, PR selects her strategy γk(·) that is a
“linear” mapping from H(2km) to H(m) such that her estimate of the underlying
information is given by

uuuk = γk(sss1:k) a.e. over X . (7)

At instant k, the strategy space of PR is denoted by Γk, which is the set of all
linear functions from H(2km) to H(m).

The decision makers have different cost measures. For the interactions over
a finite horizon with length κ, PS has the cost measure

κ∑
k=1

‖θθθk − uuuk‖2 (8)

to be minimized via η := {ηk} over Υ := ⨉k Υk. On the other side, PR has the
quadratic cost measure

κ∑
k=1

‖xxxk − uuuk‖2, (9)

to be minimized via γ := {γk} over Γ := ⨉k Γk. For the interactions over infinite
horizon, PS has the discounted cost measure

lim
κ→∞

κ∑
k=1

βk
S‖θθθk − uuuk‖2 (10)

to be minimized via η ∈ Υ , where βS ∈ (0, 1) is the discount factor. The discount
factor can be viewed as the probability that the information flow in-between PS

and PR does not terminate permanently over the infinite horizon. Correspond-
ingly, PR has the cost measure

lim
κ→∞

κ∑
k=1

βk
R‖xxxk − uuuk‖2, (11)

to be minimized via γ ∈ Γ , where βR ∈ (0, 1) is the discount factor.
The misaligned cost measures can be viewed as PR seeking to learn the

underlying information {xxxk} while PS wants PR to perceive the information of
interest {xxxk} as the private information {θθθk} by designing the information avail-
able to PR via strategic signaling. In other words, PR makes her best possible
decision selfishly according to her cost measure, yet the decision is based on the
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information available to her. By making that information set biased, PS seeks
to deceive PR to make a decision, inadvertently, in line with PS ’s interest.

For formal analysis, we analyze the interaction between the decision mak-
ers under the solution concept of Stackelberg equilibrium [3], where PS is the
leader who commits to play his strategy beforehand and PR is the follower who
selects her strategy knowing the committed signaling rules {ηk}, i.e., knowing
how biased her information set is. In the following, we provide an explicit defi-
nition of the game.

Definition 1 (Deceptive Signaling Game). The deceptive signaling game
G := (Υ, Γ, {xxxk}, {θθθk}, JS(·), JR(·)) is a Stackelberg game between the leader PS

and the follower PR. We let B(η) ∈ Γ be the best reaction set of the follower
PR for a given strategy η ∈ Υ of PS. Then, the pair of the strategy and the best
reaction set (η∗, B(η∗)) attains the Stackelberg equilibrium provided that

η∗ ∈ argmin
η∈Υ

max
γ∈B(η)

JS(η, γ) (12a)

B(η) = argmin
γ∈Γ

JR(η, γ). (12b)

3 Deceptive Signaling over Finite Horizon

In this section, we first focus on the cost measures over a finite horizon, e.g.,
with length κ. We will address the equilibrium for the cost measures over the
infinite horizon later in Sect. 4. To this end, we formulate PR’s best reaction
set, which turns out to be an equivalence class of policies that lead to a unique
uuuk. Incorporating that best response in PS ’s cost measure, PS faces an infinite-
dimensional optimization problem that can be written in a compact form when
we confine the impact of PS ’s policy into certain symmetric matrices. Indeed,
if PR’s policy space were the general class of measurable policies, then those
matrices would correspond to covariance of the posterior estimate of the under-
lying information of interest given the signals sent. Then, we show that we can
derive necessary and sufficient conditions over symmetric matrices such that
any set of matrices satisfying the conditions can be realized via certain signaling
rules. Furthermore, any signaling rule leads to a set of matrices that satisfy these
conditions. This enables us to transform the infinite-dimensional optimization
problem into a finite-dimensional one without loss of generality so that we can
apply the powerful existing computational tools. We now provide the technical
details of establishing that equivalence relationship.

We first observe that even though the players interact multiple times over a
horizon, the information flows in a single direction from PS to PR. In other words,
PS ’s strategy ηk ∈ Υk does not depend on PR’s strategy γ1:k ∈ ⨉k

j=1 Γj . There-
fore, the game can essentially be viewed as single shot (12) while the selected
policies can have consequences over the horizon. Furthermore, PR’s cost mea-
sure (9) can be separated into sub-problems such that PR selects her strategy
γk ∈ Γk in order to minimize

‖xxxk − γk(sss1:k)‖2, (13)
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which is a linear mean square error estimation problem. And a minimizing linear
strategy is given by

γk : H(2km) → H(m) (14)

sss1:k �→ E{xxxksss
′
1:k}E{sss1:ksss′

1:k}†sss1:k, (15)

where (and henceforth) the expectation is taken with respect to all the ran-
domness. Since Γk is the set of all linear functions from H(2km) to H(m), given
sss1:k ∈ H(2km), the set

{uuuk ∈ H(m) | ∃ γk ∈ Γk 	 uuuk = γk(sss1:k) a.e.} (16)

is a closed subspace of H(m). Then, the Projection Theorem [10] yields that there
is a unique minimizer uuu∗

k even though there can be multiple linear policies γk ∈ Γk

such that all lead to uuu∗
k = γk(sssk), almost everywhere over X , if E{sss1:ksss′

1:k} is
not invertible.

We note that if xxxk and sss1:k were jointly Gaussian, then the linear policy (15)
would minimize the mean square error. Furthermore, if PR’s policy space were
not restricted to linear strategies, then the best reaction would be the condi-
tional expectation of the information given the signal sent, i.e., E{xxxk|sss1:k}. Cor-
respondingly, for notational simplicity, we introduce a linear estimation operator
denoted by E(· | ·). Particularly, for random vectors aaa ∈ H(ma) and bbb ∈ H(mb),
the operator is given by

E(aaa |bbb) := argmin
uuu∈Mma (bbb)

‖aaa − uuu‖2, (17)

where Mma
(bbb) is a closed subspace of H(ma) and is given by

Mma
(bbb) := {ααα ∈ H(ma) 	 ααα = Kbbb for some K ∈ R

ma×mb}. (18)

The following lemma highlights some of the properties that E(· | ·) enjoys. We
will be using these properties while addressing the optimal deception rule.

Lemma 1. Given random vectors aaa,bbb ∈ H(ma), and ccc ∈ H(mc), let us decompose
bbb = b̃̃b̃b + b̃̃b̃b⊥ such that4 b̃̃b̃b ∈ Mma

(ccc) and b̃̃b̃b⊥ ∈ Mma
(ccc)⊥. Then, we have5

(i) E(aaa |bbb, ccc) = E(aaa | b̃̃b̃b⊥, ccc),
(ii) E{aaa E(aaa |ccc)′} = cov{E(aaa |ccc)},
(iii) E{E(aaa |bbb, ccc)E(aaa |ccc)′} = cov{E(aaa |ccc)},
(iv) cov{E(aaa |bbb, ccc)} = cov{E(aaa | b̃̃b̃b⊥)} + cov{E(aaa |ccc)}.

Proof. The proof is provided in AppendixA. �

4 Note that Mma(ccc) is a closed subspace of H(ma), and we have H(ma) = Mma(ccc) ⊕
Mma(ccc)⊥.

5 With a slight abuse of notation, we define E(aaa |bbb, ccc) := E
(
aaa | [

bbb′ ccc′]′)
.
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Substituting PR’s best reaction into PS ’s cost measure (8), PS faces the
following infinite-dimensional optimization problem:

min
η∈Υ

κ∑
k=1

‖θθθk − E(xxxk |sss1:k)‖2. (19)

In order to address this problem, we first seek to write (19) in a compact form.
To this end, we define the auxiliary parameters:

zzzk :=
[
xxxk

θθθk

]
, C :=

[
A

B

]
, and νννk :=

[
wwwk

vvvk

]
. (20)

Note that zzzk, νννk ∈ H(2m), and we have

zzzk+1 = Czzzk + νννk, (21)

and zzz0 = 02m. We let Σz,k, Σν,k ∈ S
2m denote the covariance matrices of zzzk and

νννk, respectively. Therefore, (21) yields that

Σz,k+1 = CΣz,kC ′ + Σν,k. (22)

For clear representation, we suppose that Σν,k 
 O2m. The results could also
be extended to the scenarios Σν,k � O2m based on Lemma 3 in [16] straight-
forwardly.

After some algebra, the optimization problem faced by PS (19) can be written
in a compact form as

min
η∈Υ

κ∑
k=1

tr{Hk(η1:k)V } + cκ, (23)

where the optimization argument η ∈ Υ has impact only on

Hk(η1:k) := cov{E(zzzk |sss1:k)} (24)

while V ∈ S
2m and c ∈ R are fixed deterministic parameters defined by

V :=
[

Im −Im

−Im Om

]
and cκ :=

κ∑
k=1

tr {cov{θθθk}} .

Even though η ∈ Υ is an infinite-dimensional policy, its impact on the
optimization objective is via the matrices {Hk(η1:k)}, which are finite dimen-
sional. Therefore, we seek to derive the relationship between η ∈ Υ and
{Hk(η1:k) ∈ S

2m}. Based on this relationship, we can obtain the necessary and
sufficient conditions on the matrices over ⨉κ

k=1 S
2m, i.e.,

{{Sk ∈ S
2m}κ

k=1 | ∃ η ∈ Υ 	 Sk = Hk(η1:k)}. (25)

If the corresponding necessary and sufficient conditions on matrices over S
2m

turn out to be convex, then this infinite-dimensional optimization problem (23)
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can be transformed into a finite-dimensional convex optimization problem with a
linear optimization objective, which can be solved efficiently via existing powerful
computational tools.

The following theorem provides the necessary and sufficient conditions on
{Sk ∈ S

2m}. Note that these conditions turn out to constitute a compact and
convex set that can be described by the conventional partial ordering over sym-
metric matrices, e.g., for matrices A,B ∈ S

m, we say that A � B if A − B is
a positive semi-definite matrix. Therefore, the infinite-dimensional optimization
problem (23) is equivalent to a finite-dimensional SDP.

Theorem 1. Given the random vector process {zzzk ∈ H(2m)} as defined in (20),
(21), and any stochastic kernel η ∈ Υ , we have

Σz,k � Hk(η1:k) � CHk−1(η1:k−1)C ′, (26)

where Hk : ⨉k
l=1 Υk → S

2m is as defined in (24). Furthermore, given the κ-tuple
of symmetric matrices {Sk ∈ S

2m} satisfying6

Σz,k � Sk � CSk−1C
′, for k = 1, . . . , κ, (27)

where S0 = O2m, we have that there exists a memoryless and probabilistic linear-
in-zzzk signaling rule

ηk(zzz1:k) = Lkzzzk + nnnk 	 Hk(η1:k) = Sk, (28)

where Lk ∈ R
2m×2m, and nnnk ∈ H(2m) has zero mean and is uncorrelated7 of zzz1:k

and nnn1:k−1.
Given {Sk ∈ S

2m} satisfying (27), let us take the eigen-decomposition of

Π
−1/2
k (Sk − CSk−1C

′)Π−1/2
k = UkΛkU ′

k, (29)

where
Πk := Σz,k − CSk−1C

′. (30)

We have Λk = diag{λk,1, . . . , λk,2m} with λk,i ∈ [0, 1]. Then, the corresponding
Lk ∈ R

2m×2m and cov{nnnk} are given by

Lk = diag{lk,1, . . . , lk,2m}U ′
kΠ

−1/2
k , (31)

cov{nnnk} = diag{σ2
n,k,1, . . . , σ

2
n,k,2m}, (32)

where the entries lk,i and σ2
n,k,i satisfy

l2k,i

l2k,i + σ2
n,k,i

= λk,i ∀ i = 1, . . . , 2m. (33)

6 Note that Σz,k satisfies (22).
7 We say that two random vectors aaa,bbb are uncorrelated if E{aaabbb′} = E{aaa}E{bbb}′. We

also emphasize that uncorrelatedness is sufficient since the signal (28) is linear in zzzk

and nnnk.
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Proof. Based on the properties of E(· | ·) highlighted in Lemma1, the proof fol-
lows from [17], where we show the sufficiency of (27) for multivariate Gauss-
Markov processes even when the receiver’s policy space is the general class of all
measurable policies. �

Based on Theorem 1, we can solve the following SDP instead of (23):

min
{Sk}∈Ψκ

κ∑
k=1

tr{SkV } + cκ, (34)

where

Ψκ := {{Sk ∈ S
2m}κ

k=1 |Σz,k � Sk � CSk−1C
′, S0 = O2m}. (35)

Once we have the solution {S∗
k}, we can compute the corresponding signaling

rule via Theorem 1. Note that the optimization objective in (34) is linear in
the optimization arguments while the constraint set is compact and convex.
Correspondingly, the solution (although it may not be unique) lies at the extreme
points8 of the constraint set. Reference [14] shows that any extreme point of the
constraint set (35), e.g., {Se

k}, satisfies the following recursion:

Se
k = CSe

k−1C
′ + (Σz,k − CSe

k−1C
′)1/2Pk(Σz,k − CSe

k−1C
′)1/2, (36)

for k = 1, . . . , κ, where Se
0 = O2m and Pk ∈ S

2m is a symmetric and idempotent
matrix, i.e., Pk = P 2

k , which also implies that its eigenvalues are either 0 or 1.

Remark 1 (Noisy or Noiseless Signals). We emphasize that (36) yields that
λk,i ∈ {0, 1} for k = 1, . . . , κ and i = 1, . . . , 2m in (33). In particular, the
optimal signaling rule is linear (i.e., there is no additional noise term) within
the general class of stochastic kernels for the general class of square integrable
distributions when PR’s strategy space is restricted to linear estimators.

Remark 2 (Versatility of Theorem 1). We also emphasize that the equivalence
between (19) and (34) is not limited to equivalence at the optimum. Therefore,
the equivalence would still hold when there are additional constraints on Hk(η1:k)
or if the optimization objective is not linear in Hk(η1:k), which would imply that
the solution may also not be an extreme point of the constraint set.

4 Deceptive Signaling over the Infinite Horizon

In this section, we address how to establish an equivalence relationship between
problems with different computational complexity over the infinite horizon sim-
ilar to the equivalence relationship between (19) and (34) over a finite horizon.
However, even when such an equivalence relationship has been established, the

8 We say that a point in a convex set is an extreme point if it cannot be expressed as
a convex combination of any other two points in that set.
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SDP counterpart of the original problem would still be an infinite-dimensional
optimization problem, where PS needs to design an infinite sequence of symmet-
ric matrices. In order to mitigate that, we first show the existence of a solution
and then provide an approach to approximate the solution with any approxima-
tion error. We next provide the technical details of this approximation.

We note that PR’s cost measure (11) can also be separated into sub-problems
such that PR selects her strategy γk ∈ Γk in order to minimize (13). And the
best reaction is also given by (15). Substituting PR’s best reaction into PS ’s cost
measure (10), PS faces the following optimization problem:

min
η∈Υ

lim
κ→∞

κ∑
k=1

βk
S‖θθθk − E(xxxk |sss1:k)‖2, (37)

which can also be written in a compact form as

min
η∈Υ

lim
κ→∞

κ∑
k=1

βk
S(tr{Hk(η1:k)V } + tr{Σθ,k}). (38)

The uniform boundedness conditions that ‖xxxk‖2 ≤ Mx and ‖θθθk‖2 ≤ Mθ for all
k yield that ‖zzzk‖2 ≤ Mz := Mx + Mθ. Therefore, by (26), we obtain

MzI2m � Σz,k � Hk(η1:k) � CHk−1(η1:k−1)C ′, (39)

which implies that the largest eigenvalue of the positive semi-definite matrix
Hk(η1:k) can be as large as Mz. Furthermore, Von Neumann’s trace inequality
[11] says that for square matrices A,B ∈ R

m×m with singular values σa,1 ≥
. . . ≥ σa,m and σb,1 ≥ . . . ≥ σb,m, respectively, we have

|tr{AB}| ≤
m∑

i=1

σa,iσb,i. (40)

Correspondingly, we obtain

|tr{Hk(η1:k)V }| ≤ Mz‖V ‖∗. (41)

Furthermore, the uniform bound on ‖θθθk‖ yields that tr{Σθ,k} ≤ Mθ. Since there
is a bound on the absolute value of the term in parentheses and it is uniform
over k = 1, 2, . . ., the discount factor yields that the series in (38) is absolutely
convergent. Since it is a series in R, which is complete with respect to absolute
value, the absolute convergence implies its convergence, and correspondingly, the
limit in (38) exists. Therefore, (38) can also be written as

min
η∈Υ

lim
κ→∞

κ∑
k=1

βk
Str{Hk(η1:k)V } + c (42)

where

c := lim
κ→∞

κ∑
k=1

βk
Str{Σθ,k}. (43)
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Recall that the equivalence relationship in Theorem 1 holds for arbitrary
length of horizon and its proof follows by forward induction. Therefore, (42) is
equivalent to the following optimization problem:

min
{Sk}∈Ψ

lim
κ→∞

κ∑
k=1

βktr{SkV } + c, (44)

where

Ψ := {{Sk ∈ S
2m}∞

k=1 |Σz,k � Sk � CSk−1C
′, S0 = O2m}. (45)

If a solution exists, then given the solution {S∗
k}, we can compute the corre-

sponding signaling rules via Theorem1 in an iterative way. However, existence
of a solution is not guaranteed in general. For example, closedness and bound-
edness of a set do not imply its compactness over infinite-dimensional spaces.
However, a subset of a Banach space is compact if, and only if, it is closed,
bounded and flat. We say that a set is flat if for every ε > 0, the set is contained
in the ε-neighborhood of some finite-dimensional linear subspace.

The following proposition shows that a solution exists by (i) showing that
the problem can be transformed into an optimization problem over a certain
Banach space without loss of generality; and then (ii) showing that the constraint
set is bounded and flat; finally (iii) showing that the optimization objective is
continuous, which enables us to invoke the Weierstrass Theorem [10] to conclude
that a solution exists.

Proposition 1. The infinite-dimensional optimization problem (44) admits a
solution.

Proof. Consider the linear vector space S ⊂ ⨉
∞
k=1 S

2m with norm ‖ · ‖S .
Particularly, each s ∈ S is an infinite sequence of symmetric matrices, i.e.,
s := {S1, S2, . . .}, and

‖s‖S :=

( ∞∑
k=1

‖Sk‖2F
)1/2

< ∞. (46)

Note that we can view s ∈ S as a sequence of real numbers with certain ordering
within each symmetric matrix. For example, we can view

s =
{

[Si,j
1 ], [Si,j

2 ], . . . ,
}

, (47)

where Si,j
k ∈ R denotes the ith row and the jth column entry of the matrix

Sk ∈ S
2m, as

{S1,1
1 , . . . , S1,2m

1 , . . . , S2m,1
1 , . . . , S2m,2m

1 , S1,1
2 , . . .}. (48)

The �2-norm of (48) is bounded if, and only if, ‖s‖S is bounded. Therefore, S is
a subspace of �2-space, i.e., S ⊆ �2. Furthermore, given any l ∈ �2, there exists
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a unique sequence of symmetric matrices in S. For example, l := {l1, l2, . . .} can
be transformed into a sequence of symmetric matrices as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

l1 l2 l4 . . .
l2 l3

l4
. . .

... lm(2m+1)

⎤
⎥⎥⎥⎥⎦ ,

[
lm(2m+1)+1 . . .

...
. . .

]
. . .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

and its S-norm is bounded since l ∈ �2. Therefore, �2-space is a subspace of
S, i.e., �2 ⊆ S. This yields that the normed spaces S and �2 are isometric.
Correspondingly, S is also a Banach space since �2 is Banach.

Next, our goal is to show that the constraint set in (44) is a subset of S so
that we can prove its compactness if we can show that the constraint set is flat
in addition to being a bounded subset of the Banach space S. Eventually, by
showing that the optimization objective is continuous, we can invoke Weierstrass
Theorem to conclude that a solution exists.

However, Ψ as defined in (45) is not a subset of S. By inspecting the opti-
mization objective, we observe that through a change of variable S̄k := αk

SSk for
all k, where αS :=

√
βS ∈ (0, 1), (44) can be transformed into

min
{S̄k}∈Ψ̄

lim
κ→∞

κ∑
k=1

αk
Str{S̄kV } + c, (49)

where

Ψ̄ := {{S̄k ∈ S
2m}∞

k=1 |αk
SΣz,k � S̄k � αSCS̄k−1C

′, S0 = O2m}. (50)

In order to show that Ψ̄ ⊂ S, let us take a look at the norm of any s̄ := {S̄k} ∈ Ψ̄ ,
which is given by

‖s̄‖2S = lim
κ→∞

κ∑
k=1

‖S̄k‖2F
(a)

≤ lim
κ→∞

κ∑
k=1

‖S̄k‖2∗

(b)
= lim

κ→∞

κ∑
k=1

tr{S̄k}2
(c)

≤ lim
κ→∞

κ∑
k=1

α2k
S M2

z 4m2

=
4m2M2

z α2
S

1 − α2
S

< ∞, (51)

where (a) follows since for a matrix S, the Frobenius norm ‖S‖F =
√∑

i σi(S)2
while the trace norm ‖S‖∗ =

∑
i σi(S), where σi(S) refers to the ith singular

value of S; and (b) follows since S̄k is a positive semi-definite matrix and its
singular values are the same with its eigenvalues; and (c) follows since we have
αk

SMzI2m � αk
SΣz,k � S̄k by the uniform boundedness condition on ‖zzzk‖ and

this implies that tr{S̄k} ≤ αk
SMztr{I2m}. Therefore, we have that Ψ̄ is a bounded

subset of S.
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In order to show that Ψ̄ is flat, let us consider the following finite-dimensional
space

FK := {{Fk} ∈ S |Fk = O2m for k > K}.

Note that FK ⊂ S. We define the distance of any s̄ ∈ Ψ̄ to the space FK by

d(s̄,FK) = inf{‖s̄ − f‖S , f ∈ FK}, (52)

which can also be written as9

d(s̄,FK) = inf
f∈FK

( ∞∑
k=1

‖S̄k − Fk‖2F
)1/2

(a)
= inf

f∈Fk

(
K∑

k=1

‖S̄k − Fk‖2F
︸ ︷︷ ︸

=0

+
∞∑

k=K+1

‖S̄k‖2F
)1/2

=

( ∞∑
k=K+1

‖S̄k‖2F
)1/2

≤
( ∞∑

k=K+1

α2k
S 4m2M2

z

)1/2

=
2mMzα

(K+1)
S√

1 − α2
S

, (53)

where (a) follows since {S̄1, . . . , S̄K , O2m, . . .} ∈ FK . Therefore, we can ensure
that the distance between any s̄ ∈ Ψ̄ and finite-dimensional FK is less than any
ε > 0 by selecting K ∈ N such that the upper bound on the distance, i.e., (53),
is less than ε. This yields that Ψ̄ is flat in addition to being a bounded subset of
the Banach space S. Hence Ψ̄ is a compact set.

Furthermore, the optimization objective in (49) is a linear functional over
S. It is continuous if, and only if, it is bounded. And Von Neumann’s trace
inequality (40) yields that

sup
‖s̄‖S=1

lim
κ→∞

∣∣∣∣∣
κ∑

k=1

αk
Str{S̄kV }

∣∣∣∣∣ ≤ sup
‖s̄‖S=1

lim
κ→∞

κ∑
k=1

αk
S

∣∣tr{S̄kV }∣∣

≤ sup
‖s̄‖S=1

lim
κ→∞

κ∑
k=1

αk
S

2m∑
i=1

σi(S̄k)σi(V ). (54)

Let us introduce two sequences of real numbers:

x := {σ1(S̄1), . . . , σ2m(S̄1), σ1(S̄2), . . . , σ2m(S̄2), . . .}
y := {αSσ1(V ), . . . , αSσ2m(V ), α2

Sσ1(V ), . . . , α2
Sσ2m(V ), . . .}.

9 Note that {S̄k − Fk} ∈ S, which ensures that its S-norm is bounded.
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Then, the �2-norm of the sequences is given by ‖x‖2 = 1, due to the constraint
‖s̄‖S = 1, and ‖y‖2 = (αS‖V ‖∗)/

√
1 − α2

S . With the conventional inner-product
of �2-Hilbert space, (54) can be written as

sup
‖x‖2=1

(x, y), (55)

while the Cauchy Schwarz inequality yields that

|(x, y)| ≤ ‖x‖2‖y‖2 =
αS‖V ‖∗√

1 − α2
S

, (56)

and the equality holds if, and only if, x = μy for some μ ∈ R. Therefore, due to
the norm constraint, the maximizing sequence x is given by x = y/‖y‖. Coming
back to the original problem (54), we have

sup
‖s̄‖S=1

lim
κ→∞

κ∑
k=1

αk
S

2m∑
i=1

σi(S̄k)σi(V ) ≤ αS‖V ‖∗√
1 − α2

S

(57)

and the equality holds if, and only if, we have

σi(S̄k) = αk−1
S

√
1 − α2

S

σi(V )
‖V ‖∗

. (58)

Hence, we obtain

sup
‖s̄‖S=1

lim
κ→∞

∣∣∣∣∣
κ∑

k=1

αk
Str{S̄kV }

∣∣∣∣∣ =
αS‖V ‖∗√

1 − α2
S

(59)

and the maximizing sequence of symmetric matrices is given by

S̄k =
αk−1

S

√
1 − α2

S

‖V ‖∗
V. (60)

Therefore, the linear functional is bounded, and correspondingly continuous.
This completes the proof. �

Even though a solution for (44) is guaranteed to exist, powerful computa-
tional tools to solve SDP cannot be applied since we seek to compute an infinite
sequence of symmetric matrices. However, in the following theorem, we show
how to approximate the solution with any approximation error.

Theorem 2. For any given ε > 0, let K ∈ N be such that

Mz‖V ‖∗
βK+1

S

1 − βS
< ε. (61)

Furthermore, let {S∗
1 , . . . , S∗

K} be the solution of

min
{Sk}∈ΨK

K∑
k=1

βk
Str{SkV } + c. (62)
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Then, we have

min
{Sk}∈Ψ

lim
κ→∞

κ∑
k=1

βk
Str{SkV } ≥

K∑
k=1

βk
Str{S∗

kV } − ε. (63)

Proof. Note that for any K ∈ N, we can write (44) as

min
{Sk}∈Ψ

K∑
k=1

βk
Str{SkV } + lim

κ→∞

κ∑
k=K+1

βk
Str{SkV } + c.

We seek to provide a bound on the absolute value of the second term. Particu-
larly, for any {Sk}∞

k=K+1, we have

lim
κ→∞

∣∣∣∣∣
κ∑

k=K+1

βk
Str{SkV }

∣∣∣∣∣ ≤ lim
κ→∞

κ∑
k=K+1

βk
S |tr{SkV }|

(a)

≤ lim
κ→∞

∞∑
k=K+1

βk
SMz‖V ‖∗ ≤ Mz‖V ‖∗

βK+1
S

1 − βS
, (64)

where (a) follows by (41). Therefore, if (61) holds, we have (63), which completes
the proof. �

5 Illustrative Examples

As an illustrative example, we consider the scenarios where there is only a single
stage, and xxx1 and θθθ1 are scalar random variables10. We suppose that xxx and θθθ are
independent of each other, have zero mean and unit variance. Indeed, the bias θθθ is
a standard normal random variable, i.e., θθθ ∼ N (0, 1). We, however, consider the
scenarios where the information of interest xxx is not necessarily Gaussian, in order
to examine the performances attained by the players in a more general setting,
different from the previous studies [1,7,13–15,18]. Particularly, the information
of interest xxx is given by

xxx = bbbxxxl + (1 − bbb)xxxr, (65)

almost everywhere over R, where bbb,xxxl, and xxxr are random variables independent
of each other and of the bias θθθ. Let bbb be a Bernoulli random variable and P{bbb =
1} = 1/2. And let xxxl ∼ N (−μ, σ2) and xxxr ∼ N (μ, σ2), where μ ∈ [0, 1] and
the variance σ2 are such that var{xxx} = 1. In other words, the information of
interest xxx is a Gaussian mixture with two components xxxl and xxxr at left and
right, respectively.

By varying μ ∈ [0, 1], we seek to examine the performances of the players.
Note that when μ = 0, xxx becomes a standard normal random variable as illus-
trated in Fig. 1a. Then, the best linear estimator attains the minimum mean

10 Henceforth, we omit the subscript for notational simplicity.
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(b) The case when µ = 0.7071.
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(c) The case when µ = 0.9806.
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(d) The case when µ = 1.

Fig. 1. Color-coded samples of the augmented vector zzz for different values of μ ∈ [0, 1].
For the best signaling rule to deceive a linear estimator, the best linear and nonlinear
estimates are plotted via a green line and black circles, respectively. (Color figure
online)

square error. However, for larger μ > 0, the best linear estimator does not attain
the best possible performance. PR can attain better performance by using a non-
linear filter since the underlying information is no longer Gaussian when μ > 0.
Furthermore, when μ = 1, which is the maximum possible value under the con-
straint that var{xxx} = 1, the information of interest xxx becomes a Rademacher
random variable as illustrated in Fig. 1d. Note that standard normal random
variables have the maximum entropy while Rademacher random variables have
the minimum entropy within the general class of random variables that have
zero mean and unit variance [6].

We note that the augmented vector zzz =
[
xxx θθθ
]′ ∈ R

2 has zero mean and
its covariance matrix is I2, independent of μ ∈ [0, 1]. Correspondingly, for all
μ ∈ [0, 1], the solution for (34) is given by S∗ = uu′, where u =

[
0.5257 0.8507

]′,
as shown in [20]. And the optimal signal sss∗ =

[
u′zzz 0

]′, almost everywhere over
R. The optimal signal can be viewed as the projection onto the direction of the
vector u ∈ R

2. For a linear estimator, the projection, i.e., E(zzz |u′zzz) = uu′zzz, is
the best estimate. However, for a nonlinear estimator, the best estimate is given
by E{zzz|u′zzz}, and it is not equal to the linear estimate in general.
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Fig. 2. Players’ performances for null, full, and strategic signaling, and linear and
nonlinear estimation strategies.

In Fig. 1, we plot about 500 samples of the augmented vector zzz for different
values of μ ∈ [0, 1] and color-code the samples drawn from different components
of the mixture xxx. We have conducted 107 independent trials of Monte Carlo
simulations [9] in order to compute the best nonlinear estimate E{zzz|u′zzz} numer-
ically. In Fig. 1, the best linear and nonlinear estimates for the signal sss = u′zzz
are plotted via a green line and black circles, respectively, for different μ ∈ [0, 1].
Note that the best linear and nonlinear estimates match exactly for μ = 0,
i.e., for Gaussian information, while the deviation increases for larger μ. This
deviation has different impact on players’ performances. In other words, if PR

could use the best nonlinear estimator while PS has selected his signaling rule
considering the scenarios where PR can only use the best linear estimator, e.g.,
Kalman filter; then PS can have larger cost while the best nonlinear estimator
can lead to smaller cost for PR. In Fig. 2, we compare the costs of the players
for different scenarios:

(i) PS does not share any signal, and correspondingly PR’s best lin-
ear/nonlinear estimate would be E{zzz} = 0;
(ii) PS shares zzz completely, and correspondingly PR’s best linear/nonlinear
estimate would be zzz;
(iii) PS shares u′zzz and PR uses the best linear estimator;
(iv) PS shares u′zzz yet PR uses the best nonlinear estimator.

We note that the best deceptive signaling rule is not null or full information
disclosure. And PS ’s performance degrades slightly when he/she selects the sig-
naling rule considering the scenarios where PR uses the best linear estimator
while PR can use a nonlinear estimator even when the information of interest xxx
is a Rademacher random variable as illustrated in Fig. 1d.

6 Conclusion

In non-cooperative environments, e.g., adversarial settings, an agent who has
access to valuable information could seek to deceive other agents who seek to
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make informed decisions. In this paper, we have addressed the optimal decep-
tive signaling of multivariate distributions over finite or infinite horizon. We
have modeled the interaction between the agents under the solution concept of
Stackelberg equilibrium, where the agent signaling is the leader. We have shown
that the optimal signaling strategy to deceive a Kalman filter is linear within
the general class of stochastic kernels over finite or infinite horizons. For prob-
lems over finite horizon, we have provided an SDP-based method to compute
the optimal signaling numerically. Over the infinite horizon, the corresponding
SDP is also infinite dimensional. We have shown the existence of a solution and
provided a method to approximate the optimal performance within any given ε-
neighborhood. Numerical analysis has shown that the performance of the sender
degrades slightly when the receiver uses the best nonlinear estimator even for
the scenarios where the information of interest is a Rademacher random variable
rather than Gaussian. Some future research questions on this topic include: how
much the sender’s cost measure would increase/decrease if the receiver uses a
particle filter instead of a Kalman filter; what the optimal signaling strategies
are to deceive a particle filter; and what the optimal signaling strategies are for
the scenarios with higher order cost measures other than quadratic cost.

A Proof of Lemma1

In the following, we show each property one by one: Property (i) follows since
Mma

(bbb, ccc) = Mma
(̃b̃b̃b⊥, ccc). Property (ii) follows since

E{aaaE(aaa |ccc)′} = E{aaa(E{aaaccc′}E{cccccc′}†ccc)′} = E{aaaccc′}E{cccccc′}†
E{aaaccc′}′. (66)

Property (iii) follows since, by Property (i), we have

E{E(aaa |bbb, ccc)E(aaa |ccc)′} = E{E(aaa | b̃̃b̃b⊥, ccc)E(aaa |ccc)′}. (67)

By taking a closer look at the right-hand-side, we obtain

[
E{aaaccc′}
E{aaãb̃b̃b⊥}

]′ [cov{ccc}
cov{̃b̃b̃b⊥}

]† [
E{cccccc′}
E{̃b̃b̃b⊥ccc′}

]
cov{ccc}†

E{aaaccc′}′.

Since E{̃b̃b̃b⊥ccc′} = Oma×mc
, it is equivalent to

E{aaaccc′}cov{ccc}†cov{ccc}cov{ccc}†
E{aaaccc′}′ = cov{E(aaa |ccc)},

which follows since the pseudo inverse of a matrix is a weak inverse for the
multiplicative semi-group, i.e., M†MM† = M†. Property (iv) follows since
cov{E(aaa |bbb, ccc)} is equal to cov{E(aaa | b̃̃b̃b⊥, ccc)}. By taking a closer look at the right-
hand-side, we obtain

[
E{aaaccc′}
E{aaab̃̃b̃b⊥}

]′ [cov{ccc}
cov{̃b̃b̃b⊥}

]† [
E{aaaccc′}
E{aaãb̃b̃b⊥}

]
= cov{E(aaa | b̃̃b̃b⊥)} + cov{E(aaa |ccc)}. (68)
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13. Sarıtaş, S., Yüksel, S., Gezici, S.: Quadratic multi-dimensional signaling games and

affine equilibria. IEEE Trans. Autom. Control 62(2), 605–619 (2017)
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