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Abstract. We introduce a new paradigm to the field of control theory:
“secure sensor design”. Particularly, we design sensor outputs cautiously
against advanced persistent threats that can intervene in cyber-physical
systems. Such threats are designed for the very specific target systems
and seeking to achieve their malicious goals in the long term while avoid-
ing intrusion detection. Since such attacks can avoid detection mecha-
nisms, the controller of the system could have already been intervened in
by an adversary. Disregarding such a possibility and disclosing informa-
tion without caution can have severe consequences. Therefore, through
secure sensor design, we seek to minimize the damage of such undetected
attacks in cyber-physical systems while impacting the ordinary opera-
tions of the system at minimum. We, specifically, consider a controlled
Markov-Gaussian process, where a sensor observes the state of the sys-
tem and discloses information to a controller that can have friendly or
adversarial intentions. We show that sensor outputs that are memoryless
and linear in the state of the system can be optimal, in the sense of game-
theoretic hierarchical equilibrium, within the general class of strategies.
We also provide a semi-definite programming based algorithm to design
the secure sensor outputs numerically.

Keywords: Stackelberg games · Stochastic control · Cyber-physical
systems · Security · Advanced persistent threats · Sensor design · Semi-
definite programming

1 Introduction

A cyber-physical system can be considered as a system equipped with sensing
and actuation capabilities in the physical part, and monitoring or controlling
capabilities using computer-based algorithms in the cyber part, e.g., process
control systems, robotics, smart grid, and autonomous vehicles [9]. However,
due to the cyber part, such systems are very prone to cyber-attacks. Reference
[10] reveals such vulnerabilities of the inner vehicle networks to cyber attacks
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experimentally, e.g., an attacker has been able to control the brake system of
a moving vehicle remotely. In 2010, StuxNet worm targeted very specifically
certain supervisory control and data acquisition (SCADA) systems and managed
to cause substantial damage, which was an eye-opener pointing to insufficiency of
the existing, isolation based, security mechanisms for such systems [8]. Recently
in 2014, Dragonfly Malware infiltrated into the cyber-physical systems across
the energy and pharmaceutical industries and intervened in the systems over a
long period of time stealthily [16]. In a nutshell, those experiences show that
once an adversarial attacker infiltrates into the cyber part of the system, he/she
can monitor and control the physical processes away from the system’s desired
target, which can lead to severe consequences. Therefore, developing novel formal
security mechanisms plays a vital role in the security of these systems.

Existing studies mainly focus on characterizing the vulnerabilities of cyber-
physical systems against various attack models. Reference [14] formulates neces-
sary conditions for an undetected attack that can cause unbounded error in the
state estimation. In [18], the authors characterize necessary and sufficient con-
ditions for an undetected attack when the system does not have any sensor and
process noises. In [5,6], the authors formulate the optimal cyber-attacks with
control objectives, where the attacker both seeks to be undetected and drive the
state of the systems according to his/her adversarial goals by manipulating sen-
sor outputs and control inputs together. Recently, Reference [20] has analyzed
the optimal attack strategies seeking to increase the quadratic cost of a system
with linear Gaussian dynamics, while maintaining certain degree of stealthiness.

There are also studies that aim to provide formal security guarantees against
false data injection attacks, where attackers infiltrate into a subset of multiple
sensors and report false outputs into the system. In order to detect and recover
from such attacks, Reference [7] provides a security mechanism for estimation
and control based applications, and in [13], the authors propose a coding scheme
for the outputs of multiple sensors. Apart from these two separate approaches,
i.e., analyzing optimal attacks with control objectives and encoding outputs of
multiple sensors against false data injection attacks, we aim to combine them
together in the secure sensor design framework. Particularly, closed-loop control
is essential in cyber-physical systems due to the uncertainty of the state noise,
i.e., a controller needs the sensor outputs to be able to drive the state toward
his/her desired path [11]. By designing sensor outputs in advance, we seek to
provide security against the attacks with control objectives.

Economics also plays an essential role while developing defense strategies for
cyber-security of systems [4]. As an example, investment on security measures
should not exceed the value of the protected asset. Furthermore, adversarial
attacks are also costly and an attack would be feasible, therefore expected, if the
attack costs the attacker less than the damage at the target. Therefore reducing
the damage that can be caused by such threats as much as possible is crucial
to reduce the feasibility, therefore the likelihood, of such attacks. To this end,
in the secure sensor design framework, we seek to minimize the damage by the
attacks, with minimum impact on the ordinary operations of the system.
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We propose a new approach for the security of cyber-physical systems by min-
imizing the damage of cyber-attacks on the system. We focus on undetectable,
or difficult to detect, attacks, which we call “advanced persistent threats”. These
attacks are advanced by targeting very specific systems with knowledge about
the underlying dynamics, and persistent by attacking stealthily, i.e., avoiding
detection mechanisms. Since such attackers can intervene in the system for a
long period of time without being detected, this rises the possibility of adversar-
ial intervention in cyber part of the systems at any time. Therefore, the system
designer should take such possibilities into consideration. However, the designer
should also not take precautions as if the cyber part of the system is compro-
mised due to such a possibility since that would impact the intended operations
of the system substantially. In particular, there is a trade-off between securing
the system and maintaining a certain performance in the system.

In this paper, to obtain explicit results, we specifically consider systems with
linear quadratic Gaussian dynamics and control objectives, which have various
applications in industry [20] from manufacturing processes to aerospace con-
trol. We consider the possibility for adversarial interventions in the controller
by advanced persistent threats, and seek to design sensor outputs cautiously in
advance. Therefore, there is a hierarchical structure between the sensor and the
controller of the system. The controller constructs a closed-loop control input
based on the sensor output, knowing the relationship between the sensor output
and the state. Furthermore, if the controller is an adversary, then the objectives
of the sensor and the controller mismatch. Therefore, we can analyze the interac-
tions between the sensor and the controller through a game-theoretic hierarchical
equilibrium, which implies that, as a sensor designer, we should anticipate the
controller’s reaction by also taking into account that the controller can have both
friendly or adversarial objectives. We show that for controlled Markov-Gaussian
processes, the equilibrium achieving sensor outputs are memoryless and linear in
the underlying state of the system. Additionally, we provide a semi-definite pro-
gramming (SDP) based algorithm to design secure sensor outputs numerically.

The main contributions of this paper are as follows:

– This appears to be the first work in the literature to study sensor design
against advanced persistent threats that can infiltrate into the controller of a
cyber-physical system.

– We provide a formal problem formulation from a game-theoretical perspec-
tive to design sensor outputs cautiously due to the possibility of undetected
interventions in the controllers.

– Given any sensor strategies, we compute the optimal control strategies for
both friendly and adversarial objectives. Note that the adversary seeks to
construct control inputs that are close to the control inputs that would have
been constructed if he/she had a friendly objective in order to avoid detection
and accomplish his/her malicious goals in the long term over the time horizon
by exploiting the uncertainties in the system.

– We show that the optimal sensor strategies in the sense of game-theoretic
hierarchical equilibrium are memoryless and linear in the underlying state.
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Correspondingly, friendly as well as adversarial control strategies are linear
in the sensor outputs.

– We also provide a practical algorithm to design secure sensors numerically.

The paper is organized as follows: In Sect. 2, we provide the secure sen-
sor design framework. In Sect. 3, we formulate the associated multi-stage static
Bayesian Stackelberg game. In Sect. 4, we characterize the optimal controller
response strategies for given sensor strategies. We compute the corresponding
optimal sensor strategies in Sect. 5. We conclude the paper in Sect. 6 with sev-
eral remarks and possible research directions. An AppendixA includes proof of
a technical result.

Notations: For an index-ordered set of variables, e.g., x1, · · · , xn, we define
x[k,l] := xk, · · · , xl, where 1 ≤ k ≤ l ≤ n. N(0, .) denotes the multivariate
Gaussian distribution with zero mean and designated covariance. We denote
random variables by bold lower case letters, e.g., xxx. For a vector x and a matrix
A, x′ and A′ denote their transposes, respectively, and ‖x‖ denotes the Euclid-
ean (L2) norm of the vector x. For a matrix A, tr{A} denotes its trace. We
denote the identity and zero matrices with the associated dimensions by I and
O, respectively. For positive semi-definite matrices A and B, A � B means that
A − B is also a positive semi-definite matrix.

2 Problem Formulation

Consider a controlled stochastic system [11] described by the following state
equation:

xxxk+1 = Axxxk + Buuuk + vvvk, k = 1, 2, . . . , n, (1)

where1 A ∈ R
m×m, B ∈ R

m×r, xxx1 ∼ N(0, Σ1). The additive noise sequence {vvvk}
is a white Gaussian vector process, i.e., vvvk ∼ N(0, Σv), and is independent of the
initial state xxx1. The closed loop control vector uuuk ∈ R

r is given by

uuuk = γk(sss[1,k]), (2)

where γk(·) can also be any Borel measurable function from R
mk to R

r, and
sssk ∈ R

m is the sensor output, which is given by

sssk = ηk(xxx[1,k]), (3)

where ηk(·) can be any Borel measurable function from R
mk to R

m.
As seen in Fig. 1, we have two non-cooperating agents: Sensor (S) and Con-

troller (C). C can be a friend or an adversary while S does not know C’s type.
Only S has access to the state xxxk and can construct sensor output sssk. C observes
sssk, knows S’s strategy ηk(·) due to a hierarchy between the agents, and, by using
sss[1,k], can construct a closed loop control input uuuk, which cannot be monitored
by the system.
1 Even though we consider time invariant matrices A and B for notational simplicity,

the provided results could also be extended to time-variant cases.
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Fig. 1. Cyber physical system including a sensor and a controller.

Remark 1. A hierarchy between the agents is a reasonable assumption in con-
trol system design since sensors are designed and implemented in advance, and
system engineers design the controllers knowing the relation between the sensor
output and the underlying state.

The agents S and C construct sssk and uuuk according to their own objectives.
In particular, S chooses ηk(·) from the strategy space Υk, which, for each k, is
the set of all Borel measurable functions from R

mk to R
m, i.e., ηk ∈ Υk and

sssk = ηk(xxx[1,k]). C chooses γk(·) from the strategy space Γk, which is the set of
all Borel measurable functions from R

mk to R
r, i.e., γk ∈ Γk and uuuk = γk(sss[1,k]).

Normally, in a stochastic control scenario [11], S and C would have a common
finite horizon2 quadratic loss function

L(xxx[2,n+1], sss[1,n],uuu[1,n]) =
n∑

k=1

‖xxxk+1‖2Qk+1
+ ‖uuuk‖2Rk

, (4)

where Qk+1 ∈ R
m×m is positive semi-definite and Rk ∈ R

r×r is positive definite.
Then, S would disclose the state directly so that C could drive the state in their
commonly desired path [11,12]. However, in a cyber physical system, the system
is vulnerable against adversarial attacks that seek to drive the state of the system
away from the system’s desired target. We call such attacks “advanced persistent
threats”, which are advanced by being designed very specifically for the targeted
system, i.e., the attacker knows, or can learn stealthily, the underlying state
recursion, and persistent by avoiding intrusion detection. Therefore, S, i.e., the
sensor designer, should anticipate the likelihood of adversarial intrusions into C,
i.e., the possibility that C can be an adversary, and construct sssk accordingly.

We denote the set of all adversarial objectives by Ω, the appropriate σ-algebra
on Ω by F, and the probability distribution over Ω by P. In particular, we have
the probability space (Ω,F,P). And for a point ω ∈ Ω drawn from Ω according

2 E.g., horizon length is n.
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to P, the adversarial loss function is given by

LA(ω,xxx[2,n+1], sss[1,n],uuu[1,n]) =
n∑

k=1

‖xxxk+1 − z(ω)‖2QA,k+1(ω)

+ ‖uuuA,k − uuu∗
F,k‖2RA,k(ω), (5)

where uuuA,k, k = 1, . . . , n, denotes the adversarial action, z : (Ω,F) → (Rm,Bm)
is an (F,Bm) measurable function3, QA,k+1 : (Ω,F) → (Rm×m,Bm×m) is an
(F,Bm×m) measurable function such that QA,k+1(ω) ∈ R

m×m is positive semi-
definite, and RA,k : (Ω,F) → (Rr×r,Br×r) is an (F,Br×r) measurable function
such that RA,k(ω) ∈ R

r×r is positive definite. Here, for each ω ∈ Ω, z(ω) denotes
the desired state that the adversary seeks to drive the system to, and uuu∗

F,k is the
optimal action that would have been taken if C was a friend so that the adversary
can avoid intrusion detection by being close to uuu∗

F,k. We further assume that z(ω)
is a second-order random vector.

Remark 2. We note that if the control inputs could have been monitored, then
any deviation of the control input from the optimal control input of a friend
type C could have been detected instantly.

3 A Multi-stage Static Bayesian Stackelberg Game

In order to model undetected adversarial interventions, let θθθ be a Bernoulli
random variable, with a commonly known p, corresponding to the likelihood of
C being an adversary, i.e., P{θθθ = 1} = p, and θθθ = 1 if C is an adversary. Since
the type of C is not known by S, we can consider this incomplete information
scenario as an imperfect information scenario [15]; in which Nature moves first,
draws a realization of θθθ, then if the realization θ = 1, also draws ω ∈ Ω, and
reveals these only to C.

Furthermore, the multiple interactions between non-cooperating S and C can
be considered as a multi-stage game [1]. Since S’s actions sss[1,n] do not depend on
C’s actions uuu[1,n], i.e., S cannot update his/her strategies after observing uuu[1,n],
this is a multi-stage static game. The underlying state recursion is common
knowledge of both S and C (even if C can be an adversary). The type of C and,
if C is an adversary, his/her objective are not known by S. However, S knows
the probability space (Ω,F,P) and p, which implies that this is a multi-stage
static Bayesian game. There is also a hierarchy [1,17] between the agents in the
announcement of the strategies such that S leads the game by announcing and
sticking to his/her strategies in advance, i.e., C knows η[1,n] in advance. There-
fore, we can model such a scheme as a multi-stage static Bayesian Stackelberg
game, in which S is the leader.

Remark 3. Once any adversarial intrusion has been detected due to C’s anom-
alous behavior through external defense mechanisms, this multi-stage static
3 Bm denotes the Borel σ-algebra on R

m.
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Bayesian Stackelberg game terminates since the uncertainty about C’s type
is removed. The reaction of the system after the detection is beyond this
paper’s scope. Therefore, we consider that the game continues over the hori-
zon and continuation of the game implies that any adversarial intervention has
not been detected while the possibility of undetected adversarial intervention
still exists.

Remark 4. Even though the attacker can also inject false data into the sensor
outputs in order to avoid detection as in integrity attacks, e.g., [5,6], the attacker
still needs the actual sensor outputs, which are designed by the system designer
in advance, in order to construct the optimal control input according to his/her
objective. Therefore, secure sensor design framework also plays a crucial role for
the security of the systems against integrity attacks.

S and C aim to minimize their expected loss functions through the actions
sss[1,n] and uuu[1,n] by choosing the strategies η[1,n] and γ[1,n] accordingly. Given
the realizations of S’s actions, i.e., s[1,k], C constructs the control input uF,k

or uA,k depending on his/her type, which not only depends on s[1,k], but also
the associated strategies η[1,k]. In order to show this dependence explicitly, we
denote C’s strategies by uuuF,k = γF,k(sss[1,k]; η[1,k]) instead of γF,k(sss[1,k]) if C is a
friend, or uuuA,k = γA,k(ω,sss[1,k]; η[1,k]) instead of γA,k(ω,sss[1,k]) if C is an adversary.
Furthermore, given S’s strategies η[1,n], we let ΠF (η[1,n]),ΠA(ω, η[1,n]) ⊂ R

r×n

be C’s reaction set. And these reaction sets are given by:

ΠF (η[1,n]) := argmin
uF,k∈R

r

k=1,...,n

E{L(xxx[2,n+1], sss[1,n],uuuF,[1,n])},

ΠA(ω, η[1,n]) := argmin
uA,k∈R

r

k=1,...,n

E{LA(ω,xxx[2,n+1], sss[1,n],uuuA,[1,n])},

where E denotes the expectation taken over {xxx1, vvv[1,n]}. Due to the positive
definiteness assumptions on Rk and RA,k(ω), for all ω ∈ Ω, L and LA are
strictly convex in C’s actions uuuF,[1,n],uuuA,[1,n]. This implies that the corresponding
reaction sets ΠF and ΠA are singletons and the best C actions uuu∗

F,k,uuu∗
A,k are

unique.
Corresponding to the loss functions L and LA, depending on the agents’

actions sssk and uuuk, there exist certain cost functions depending on the agents’
strategies: J(η[1,n], γ[1,n]) and JA(ω, η[1,n], γ[1,n]), while each strategy implicitly
depends on the other. Therefore let Π̃F and Π̃A be the sets of best C strategies,
as subsets of ⨉n

k=1 Γk:

Π̃F (η[1,n]) := argmin
γF,k∈Γk

k=1,...,n

J(η[1,n], γF,[1,n]),

Π̃A(ω, η[1,n]) := argmin
γA,k(ω,·)∈Γk

k=1,...,n

JA(ω, η[1,n], γA,[1,n]),
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which are equivalence classes such that ∀ γ∗
F,[1,n] ∈ Π̃F (or ∀ γ∗

A,[1,n] ∈ Π̃A),
we have uuu∗

F,k = γ∗
F,k(sss[1,k]; η[1;k]) (or uuu∗

A,k = γ∗
A,k(ω,sss[1,k]; η[1;k])). Therefore, the

pair of strategies
[
η∗
[1,n]; (γ

∗
F,[1,n], γ

∗
A,[1,n])

]
attains the Stackelberg equilibrium

provided that

η∗
[1,n] = argmin

ηk∈Υk,
k=1,...,n

(1 − p)J
(
η[1,n], γ

∗
F,[1,n](·; η[1,n])

)

+ p

∫

Ω

J
(
η[1,n], γ

∗
A,[1,n](ω, ·; η[1,n])

)
P(dω) (6a)

γ∗
F,[1,n](·; η[1,n]) = argmin

γF,k∈Γk,
k=1,...,n

J
(
η[1,n], γF,[1,n](·; η[1,n])

)
, (6b)

γ∗
A,[1,n](ω, ·; η[1,n]) = argmin

γA,k(ω,·)∈Γk,
k=1,...,n

JA

(
ω, η[1,n], γA,[1,n](ω, ·; η[1,n])

)
. (6c)

In the following sections, we analyze these equilibrium achieving strategies,
i.e.,

[
η∗
[1,n]; (γ

∗
F,[1,n], γ

∗
A,[1,n])

]
.

4 Optimal Follower (Controller) Reactions

By (4), for a given sss[1,n], the friendly C also seeks to minimize

n∑

k=1

E

{
‖xxxk+1‖2Qk+1

+ ‖uuuk‖2Rk

}
, (7)

over γF,k ∈ Γk, k = 1, . . . , n, such that uuuF,k = γF,k(sss[1,k]) subject to (1)–(3).
In order to facilitate the subsequent analysis, in the following, we rewrite the
state equations (1)–(2) and the expected loss function (7) without altering the
optimization problem.

Lemma 1. The friendly objective (7) is equivalent to:

min
γF,k∈Γk

k=1,...,n

n∑

k=1

E‖uuuF,k + Kkxxxk‖2Δk
+ G, (8)

where

Kk = Δ−1
k B′

kQ̃k+1A (9a)

Δk = B′Q̃k+1B + Rk (9b)

G = tr{Σ1Q̃1} +
n∑

k=1

tr{ΣvQ̃k+1} (9c)
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and {Q̃k} is a sequence defined through the following discrete-time Riccati equa-
tion:

Q̃k+1 = Qk + A′
(
Q̃k+1 − Q̃k+1BΔ−1

k B′Q̃k+1

)
A, (10a)

Q̃n+1 = Qn+1 and Q1 = O. (10b)

Proof. This follows from the extensively used “completing the squares” tech-
nique [2,11]. �

Note that in (8), xxxk depends on the previous control inputs uuu[1,k−1]. Through
a change of variables [2], the friendly C’s objective (8) can be written as

min
γF,k∈Γk

k=1,...,n

n∑

k=1

E‖uuuo
F,k + Kkxxx

o
k‖2Δk

+ G (11)

subject to (9)–(10) and

xxxo
k+1 = Axxxo

k + vvvk, k = 1, . . . , n, and xxxo
1 = xxx1, (12a)

uuuo
F,k = uuuF,k + KkBuuuF,k−1 + KkABuuuF,k−2 + · · · + KkAk−2BuuuF,1. (12b)

Note also that, now, the process {xxxo
k} is independent of the control inputs

uuuF,k (and uuuo
F,k). Therefore, by (11), given the sensor outputs sss[1,k] = s[1,k], the

optimal transformed control input uo∗
F,k (12b) is given by

uo∗
F,k = −KkE{xxxo

k|sss[1,k] = s[1,k]},

which implies
uuuo∗

F,k = −KkE{xxxo
k|sss[1,k]} (13)

almost everywhere on R
r. By (12b), we have

⎡

⎢⎣

uuuo
F,n

uuuo
F,n−1...
uuuo

F,1

⎤

⎥⎦

︸ ︷︷ ︸
=: uuuo

=

⎡

⎣
I KnB ··· KnAn−2B

I ··· Kn−1An−3B
. . .

...
I

⎤

⎦

︸ ︷︷ ︸
=: Φ

[ uuuF,n
uuuF,n−1...

uuuF,1

]

︸ ︷︷ ︸
=: uuu

,

which can also be written as uuuo
F = ΦuuuF . And (13) leads to

uuuo∗
F = −

[
Kn . . .

K1

]

︸ ︷︷ ︸
=: K

[
E{xxxo

n|sss[1,n]}...
E{xxxo

1|sss1}

]

︸ ︷︷ ︸
=: x̂̂x̂xo

, (14)

which yields that the actual optimal control inputs are given by

uuu∗
F = −Φ−1K x̂̂x̂xo. (15)
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While the friendly C has the same objective (4) with S, by (5), for each
ω ∈ Ω, the adversarial C’s objective is to minimize

n∑

k=1

E

{
‖xxxk+1 − z(ω)‖2QA,k+1(ω) + ‖uuuA,k − uuu∗

F,k‖2RA,k(ω)

}
, (16)

over γA,k(ω, ·) ∈ Γk, k = 1, . . . , n, such that uuuA,k = γA,k(ω,sss[1,k]) subject to
(1)–(3). Next, we aim to rewrite the state equations and the expected loss func-
tions as in Lemma 1 and (11) for the minimization of the adversarial objective.

Let δuuu k := uuuA,k − uuu∗
F,k and instead of (1), consider the following recursion:

⎡

⎣
xxxk+1

uuu∗
F

z(ω)

⎤

⎦ =
[

A · · · B · · ·
O I

]

︸ ︷︷ ︸
=: Ā

⎡

⎣
xxxk

uuu∗
F

z(ω)

⎤

⎦

︸ ︷︷ ︸
= x̄̄x̄xk

+
[

B
O

]

︸ ︷︷ ︸
=: B̄

δuuu k +
[

I
O

]

︸ ︷︷ ︸
=: E

vvvk,

which can also be written as

x̄̄x̄xk+1 = Āx̄̄x̄xk + B̄ δuuu k + Evvvk. (17)

Correspondingly, the objective can be rewritten as
n∑

k=1

E

{
‖x̄̄x̄xk+1‖2Q̄A,k+1(ω) + ‖ δuuu k‖2RA,k(ω)

}
, (18)

where

Q̄A,k+1(ω) :=
[

I
O
−I

]
QA,k+1(ω) [ I O −I ]

=
[

QA,k+1(ω) O −QA,k+1(ω)
O O O

−QA,k+1(ω) O QA,k+1(ω)

]
.

We point out the resemblance between (7) and (18). Therefore, by Lemma 1
and (11), we have the following transformations:

Lemma 2. The adversary’s objective (18) is equivalent to:

min
γA,k(ω,·)∈Γk

k=1,...,n

n∑

k=1

E‖ δuuu k + KA,k(ω)x̄̄x̄xk‖2ΔA,k(ω) + GA(ω), (19)

where

KA,k(ω) = ΔA,k(ω)−1B̄′Q̃A,k+1(ω)Ā (20a)

ΔA,k(ω) = B̄′Q̃A,k+1(ω)B̄ + RA,k(ω) (20b)

GA(ω) = tr{Σ̄1Q̃A,1(ω)} +
n∑

k=1

tr{Σ̄vQ̃A,k+1(ω)}, (20c)

Σ̄1 :=
[

Σ1 E{xxxo
1(uuu

∗
F )′} O

E{uuu∗
F (xxxo

1)
′} E{uuu∗

F (uuu∗
F )′} O

O O z(ω)z(ω)′

]
and Σ̄v :=

[
Σv O
O O

]
,
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and {Q̃A,k(ω)} for each ω ∈ Ω is a sequence defined through the following
discrete-time Riccati equation:

Q̃A,k+1(ω) = QA,k(ω) + Ā′
(
Q̃A,k+1(ω)− Q̃A,k+1(ω)B̄ΔA,k(ω)

−1B̄′Q̃A,k+1(ω)
)
Ā, (21a)

Q̃A,n+1(ω) = QA,n+1(ω) and QA,1(ω) = O. (21b)

And corresponding to (11), the adversarial objective (19) can be written as

min
γA,k(ω,·)∈Γk

k=1,...,n

n∑

k=1

E‖ δuuu o
k + KA,k(ω)x̄̄x̄xo

k‖2ΔA,k(ω) + GA(ω) (22)

subject to (20)–(21) and

x̄̄x̄xo
k+1 = Āx̄̄x̄xo

k + Evvvk, k = 1, . . . , n, and x̄̄x̄xo
1 = x̄̄x̄x1, (23a)

δuuu o
k = δuuu k + KA,k(ω)B̄ δuuu k−1 + KA,k(ω)ĀB̄ δuuu k−2 + · · ·+ KA,k(ω)Ā

k−2B̄ δuuu 1. (23b)

Note that in (22), CA(ω) is independent from the adversary’s optimization
arguments even though it depends on uuu∗

F due to Σ̄1 in (20c). Furthermore, given
the sensor outputs sss[1,k] = s[1,k], the optimal transformed adversary action δuo∗

A,k

of (23b) is given by

δuo∗
A,k = −KA,k(ω)E{x̄̄x̄xo

k|sss[1,k] = s[1,k]},

which also implies
δuuu o∗

k = −KA,k(ω)E{x̄̄x̄xo
k|sss[1,k]} (24)

almost everywhere on R
r. By (23b), we have

⎡

⎣
δuuu o

n

δuuu o
n−1...

δuuu o
1

⎤

⎦

︸ ︷︷ ︸
=: δuuu o

=

⎡

⎣
I KA,n(ω)B̄n−1 ··· KA,n(ω)Ān−2B̄

I ··· KA,n−1(ω)Ān−3B̄
. . .

...
I

⎤

⎦

︸ ︷︷ ︸
=: ΦA(ω)

⎡

⎣
δuuu n

δuuu n−1...
δuuu 1

⎤

⎦

︸ ︷︷ ︸
=: δuuu

,

which can also be written as δuuu o = ΦA(ω) δuuu . And (24) leads to

δuuuo∗ = −
[

KA,n(ω)
. . .

KA,1(ω)

]

︸ ︷︷ ︸
=: KA(ω)

[
E{x̄̄x̄xo

n|sss[1,n]}...
E{x̄̄x̄xo

1|sss1}

]
. (25)

Next, we seek to compute E{x̄̄x̄xo
k|sss[1,k]} in (24). To this end, let us take a closer

look at (23a):
⎡

⎣
x̌̌x̌xk+1

uuu∗
F

z(ω)

⎤

⎦ =
[

A · · · B · · ·
O I

] ⎡

⎣
x̌̌x̌xk

uuu∗
F

z(ω)

⎤

⎦ +
[

I
O

]
vvvk,
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where we introduce x̌̌x̌xk, which is given by

x̌̌x̌x1 = xxx1 = xxxo
1

x̌̌x̌x2 = Ax̌̌x̌x1 + Buuu∗
F,1 + vvv1 = xxxo

2 + Buuu∗
F,1

x̌̌x̌x3 = Ax̌̌x̌x2 + Buuu∗
F,2 + vvv2 = A(xxxo

2 + BuuuF,1) + Buuu∗
F,2 + vvv2 = xxxo

3 + ABuuu∗
F,1 + Buuu∗

F,2

...

x̌̌x̌xk = xxxo
k + Buuu∗

F,k−1 + ABuuu∗
F,k−2 + · · · + Ak−2Buuu∗

F,1. (26)

Then, we have

⎡

⎣
x̌̌x̌xn

x̌̌x̌xn−1...
x̌̌x̌x1

⎤

⎦ =

⎡

⎣
xxxo

n

xxxo
n−1...
xxxo
1

⎤

⎦ +

⎡

⎣
O B AB ··· An−2B
O O B ··· An−3B...

...
O O ··· ··· O

⎤

⎦

︸ ︷︷ ︸
=: D

⎡

⎢⎣

uuu∗
F,n

uuu∗
F,n−1...
uuu∗

F,1

⎤

⎥⎦ .

Let D be partitioned as D = [D′
n · · · D′

1]
′ such that

x̌̌x̌xk = xxxo
k + Dkuuu

∗
F . (27)

Therefore, E{x̄̄x̄xo
k|sss[1,k]} can be written as

E{x̄̄x̄xo
k|sss[1,k]} =

[
E{xxxo

k|sss[1,k]}+DkE{uuu∗
F |sss[1,k]}

E{uuu∗
F |sss[1,k]}
z(ω)

]
. (28)

Furthermore, (14) and (15) lead to

E{uuu∗
F |sss[1,k]} = −Φ−1K

[
E{E{xxxo

n|sss[1,n]}|sss[1,k]}...
E{E{xxxo

1|sss1}|sss[1,k]}

]
. (29)

Note that we have

E{E{xxxo
l |sss[1,l]}|sss[1,k]} =

{
E{xxxo

l |sss[1,k]} if l ≥ k
E{xxxo

l |sss[1,l]} if l < k
,

where the first case, i.e., l ≥ k, follows due to the iterated expectations with
nested conditioning sets, i.e., {sss[1,l]} ⊇ {sss[1,k]} if l ≥ k, and the second case, i.e.,
l < k, follows since E{xxxo

l |sss[1,l]} is σ-sss[1,k] measurable if l < k. Therefore, (29)
can be written as

E{uuu∗
F |sss[1,k]} = −Φ−1K

⎡

⎢⎢⎢⎢⎢⎣

O

An−k

...
A
I

O

O O I

⎤

⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=: Lk

x̂̂x̂xo, (30)



Secure Sensor Design 103

where the middle block is the kth block column. Hence, we can rewrite (28) as

E{x̄̄x̄xo
k|sss[1,k]} =

[
Ek−DkΦ−1KLk

−Φ−1KLk

O

]

︸ ︷︷ ︸
=: Fk

x̂̂x̂xo +
[

O
O

z(ω)

]

︸ ︷︷ ︸
=: z(ω)

, (31)

where Ek is the indicator matrix such that E{xxxo
k|sss[1,k]} = Ek x̂̂x̂xo, k = 1, . . . , n.

Then, by (24), (25), and (31), we have

δuuu o∗(ω) = −KA(ω)

[
Fn...
F1

]

︸ ︷︷ ︸
=: F

x̂̂x̂xo − KA(ω)z(ω).

Therefore, the actual optimal adversarial actions are given by

uuu∗
A(ω) = uuu∗

F − ΦA(ω)−1KA(ω)
[
F x̂̂x̂xo + z(ω)

]
. (32)

In the following theorem, we recap the results.

Theorem 1. Given S’s strategies sssk = ηk(xxx[1,k]), k = 1, . . . , n, C’s optimal
reactions uuuF,k and uuuA,k(ω) are given by (15) or (32) depending on whether C is
a friend or an adversary, respectively.

In the following section, we formulate S’s optimal strategies.

5 Optimal Leader (Sensor) Actions

By Theorem 1, S’s objective can be written as

min
ηk∈Υk,

k=1,...,n

(1 − p)
n∑

k=1

E

{
‖xxxk+1‖2Qk+1

+ ‖uuu∗
F,k‖2Rk

}

+ p

∫

Ω

n∑

k=1

E

{
‖xxxk+1‖2Qk+1

+ ‖uuu∗
A,k(ω)‖2Rk

}
P(dω).

However, we should also take into account that xxxk evolves according to (1), which
implies that the state xxxk depends on the control input, and therefore C’s type. In
order to show this explicit dependence, henceforth, we will denote the state by
xxxF,k when C is a friend or by xxxA,k when C is an adversary. Correspondingly, the
sensor outputs are denoted by sssF,k and sssA,k, respectively. Therefore, an explicit
representation for S’s objective is given by

min
ηk∈Υk,

k=1,...,n

(1 − p)
n∑

k=1

E

{
‖xxxF,k+1‖2Qk+1

+ ‖uuu∗
F,k‖2Rk

}

+ p

∫

Ω

n∑

k=1

E

{
‖xxxA,k+1(ω)‖2Qk+1

+ ‖uuu∗
A,k(ω)‖2Rk

}
P(dω). (33)
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Even though S constructs a single set of strategies {ηk ∈ Υk} without knowing
C’s type, the resulting sensor outputs {sssk = ηk(xxx[1,k])} depend on the states,
xxx[1,k]’s, hence C’s type, i.e., xxxk = xxxF,k if C is a friend or xxxk = xxxA,k if C is an
adversary.

Let T := Φ−1K,

TA(ω) := Φ−1K + ΦA(ω)−1KA(ω)F

ξ(ω) := ΦA(ω)−1KA(ω)z(ω)

such that uuu∗
F = −T x̂̂x̂xo

F and uuu∗
A(ω) = −TA(ω) x̂̂x̂xA − ξ(ω), where x̂̂x̂xo

ι :=[
( x̂̂x̂xo

ι,n)′ · · · ( x̂̂x̂xo
ι,1)

′]′ and x̂̂x̂xo
ι,k := E{xxxo

k|sssι,[1,k]}, for ι = {F,A}. Note that the
matrices T and TA(ω), for each ω ∈ Ω, are block upper triangular. Fur-

thermore, let x̂̂x̂xo
ι,k :=

[
( x̂̂x̂xo

ι,k)′ · · · ( x̂̂x̂xo
ι,1)

′
]′

, ξ(ω) be partitioned into ξ(ω) =

[ξn(ω)′ · · · ξ1(ω)′]′, and the block upper triangular matrices T and TA(ω) be
partitioned into the block matrices as

T =

⎡

⎣
Tn,n Tn,n−1 ··· Tn,1

Tn−1,n−1 ··· Tn−1,1. . .
T1,1

⎤

⎦ , TA =

⎡

⎣
TA,n,n TA,n,n−1 ··· TA,n,1

TA,n−1,n−1 ··· TA,n−1,1. . .
TA,1,1

⎤

⎦ ,

where we have dropped the argument ω for notational simplicity, and T̄k :=
[Tk,k · · · Tk,1], T̄A,k(ω) := [TA,k,k(ω) · · · TA,k,1(ω)]. Then, by Lemma 1 and
(11), (33) is equivalent to

min
ηk∈Υk,

k=1,...,n

(1 − p)
n∑

k=1

E‖Kkxxx
o
k − T̄k x̂̂x̂xo

F,k‖2Δk

+ p

∫

Ω

n∑

k=1

E‖Kkxxx
o
k − T̄A,k(ω) x̂̂x̂xo

A,k(ω) − ξk(ω)‖2Δk
P(dω) + G. (34)

The first summation in (34) can be written as

n∑

k=1

tr
{
E{xxxo

k(xxxo
k)′}K ′

kΔkKk

} − 2 tr
{
E{ x̂̂x̂xo

F,k(xxxo
k)′}K ′

kΔkT̄k

}

+ tr
{
E{ x̂̂x̂xo

F,k( x̂̂x̂xo
F,k)′}T̄ ′

kΔkT̄k

}
(35)
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while the second summation can be written as
n∑

k=1

tr{E{xxxo
k(xxxo

k)′}K ′
kΔkKk} +

∫

Ω

ξk(ω)′Δkξk(ω)P(dω)

+
∫

Ω

tr
{
E{ x̂̂x̂xo

A,k(ω) x̂̂x̂xo
A,k(ω)′}T̄A,k(ω)′ΔkT̄A,k(ω)

}
P(dω)

− 2
∫

Ω

tr
{
E{ x̂̂x̂xo

A,k(ω)(xxxo
k)′}K ′

kΔkT̄A,k(ω)
}
P(dω)

+ 2
∫

Ω

tr
{
E{ x̂̂x̂xo

A,k(ω)}ξk(ω)′ΔkT̄A,k(ω)
}
P(dω)

− 2
∫

Ω

tr
{
E{xxxo

k}ξk(ω)′ΔkKk

}
P(dω), (36)

where the last term is zero since xxxo
k is zero-mean. The following lemma says that

the posterior covariances do not depend on ω.

Lemma 3. The posterior x̂̂x̂xo
A,k(ω) is independent of ω. Further, both posteriors

x̂̂x̂xo
F,k and x̂̂x̂xo

A,k are equivalent and given by

x̂̂x̂xo
k := x̂̂x̂xo

F,k = x̂̂x̂xo
A,k(ω) = E

{
xxxo

k | η1(xxxo
1), . . . , ηk(xxxo

[1,k])
}

. (37)

Proof. Consider the state recursion when C is a friend:

xxxF,k+1 = AxxxF,k + Buuu∗
F,k + vvvk,

which can also be written as4

xxxF,1 = xxxo
1

xxxF,2 = AxxxF,1 + Buuu∗
F,1 + vvv1 = xxxo

2 + Buuu∗
F,1

xxxF,3 = AxxxF,2 + Buuu∗
F,2 + vvv2 = A(xxxo

2 + Buuu∗
F,1) + Buuu∗

F,2 + vvv2

= xxxo
3 + ABuuu∗

F,1 + Buuu∗
F,2

...

xxxF,k = xxxo
k + Buuu∗

F,k−1 + ABuuu∗
F,k−2 + · · · + Ak−2Buuu∗

F,1.

Let Mk := [B AB · · · Ak−2B] and uuuF,k := [uuu′
F,k · · · uuu′

F,1]
′. Then, for k > 1, we

have
xxxF,k := xxxo

k + Mk−1uuuF,k−1. (38)

Furthermore, let

Tk :=

⎡

⎣
Tk,k ··· Tk,1. . .

...
T1,1

⎤

⎦

4 Note the resemblance to (26).
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such that uuuF,k = −Tk x̂̂x̂xo
F,k and (38) can be written as

xxxF,k = xxxo
k − Mk−1Tk−1 x̂̂x̂xo

F,k−1. (39)

Therefore, we have x̂̂x̂xo
F,k = E{xxxo

k|η1(xxxo
1), . . . , ηk(xxxo

1, . . . ,xxx
o
k − ck,k)}, for certain

deterministic ci,j ∈ R
m, i, j = 1, . . . , k, since x̂̂x̂xo

F,j is σ − xxxo
[1,j] measurable.

Correspondingly, we have

xxxA,k(ω) = xxxo
k − Mk−1TA,k−1(ω) x̂̂x̂xo

A,k−1 − Mk−1ξk−1
(ω), (40)

where

TA,k(ω) :=

⎡

⎣
TA,k,k(ω) ··· TA,k,1(ω)

. . .
...

TA,1,1(ω)

⎤

⎦ and ξ
k
(ω) :=

[
ξk(ω)...
ξ1(ω)

]
,

which leads to x̂̂x̂xo
A,k(ω) = E{xxxo

k|η1(xxxo
1), . . . , ηk(xxxo

1, . . . ,xxx
o
k − dk,k(ω))}, for certain

other deterministic di,j(ω) ∈ R
m, i, j = 1, . . . , k, since x̂̂x̂xo

A,j(ω) is σ − xxxo
[1,j]

measurable.
Next, we employ the following lemma about shifting of random variables in

order to compute x̂̂x̂xo
F,k’s and x̂̂x̂xo

A,k(ω)’s.

Lemma 4. Let (Ω,F,P) be a probability space, where Ω is the outcome space
with an appropriate σ-algebra F, and P is a distribution over Ω. Let also xxx :
(Ω,F) → (Rm,Bm) be a random variable, h : (Rm,Bm) → (Rm,Bm) be a Borel
measurable function, and c ∈ R

m be a deterministic vector. Then, we have

E{xxx|h(xxx)} = E{xxx|h(xxx + c)}. (41)

Proof. The proof is provided in the AppendixA. �
Therefore, Lemma 4 and (51) imply (37) and the proof is concluded. �
Next, by (35), (36), and Lemma 3, (34) can be written as

min
ηk∈Υk,

k=1,...,n

n∑

k=1

tr{ΣkK ′
kΔkKk} + pEΩ{ξk(ω)′Δkξk(ω)}

− 2 tr
{
E{ x̂̂x̂xo

k(xxxo
k)′}K ′

kΔk

(
(1 − p)T̄k + pEΩ{T̄A,k(ω)})

}

+ p tr
{
E{ x̂̂x̂xo

k( x̂̂x̂xo
k)′}EΩ{T̄A,k(ω)′ΔkT̄A,k(ω)}

}

+ (1 − p) tr
{
E{ x̂̂x̂xo

k( x̂̂x̂xo
k)′} T̄ ′

kΔkT̄k

}
+ G, (42)

where EΩ denotes the expectation taken over Ω with respect to the distribution
P and Σk := E{xxxo

k(xxxo
k)′}.

We note that for l ≤ k, E{ x̂̂x̂xo
l (xxx

o
k)′} = E{ x̂̂x̂xo

l (xxx
o
l )

′}(A′)k−l since vvvj , j > l,
and x̂̂x̂xo

l , which is σ-sss[1,l] measurable, are independent of each other and {vvvk} is
a zero-mean white noise process. Furthermore, we have

E{ x̂̂x̂xo
l (xxx

o
l )

′} = E{E{ x̂̂x̂xo
l (xxx

o
l )

′|sss[1,l]}}
= E{ x̂̂x̂xo

l ( x̂̂x̂xo
l )

′} (43)
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due to the law of iterated expectations. Let Hk := E{ x̂̂x̂xo
k( x̂̂x̂xo

k)′}. Then, we have

E{ x̂̂x̂xo
k(xxxo

k)′} =

⎡

⎣
Hk

Hk−1A′
...

H1(A
′)k−1

⎤

⎦ ,E{ x̂̂x̂xo
k−1(xxx

o
k)′} =

[
Hk−1A′

...
H1(A

′)k−1

]

and

E{ x̂̂x̂xo
k( x̂̂x̂xo

k)′} =

[
E{ x̂̂x̂xo

k( x̂̂x̂xo
k)

′} ··· E{ x̂̂x̂xo
k( x̂̂x̂xo

1)
′}...

...
E{ x̂̂x̂xo

1( x̂̂x̂xo
k)

′} ··· E{ x̂̂x̂xo
1( x̂̂x̂xo

1)
′}

]

=

⎡

⎢⎣

Hk AHk−1 ··· Ak−1H1

Hk−1A′ Hk−1 ··· Ak−2H1...
...

. . .
...

H1(A
′)k−1 H1(A

′)k−2 ··· H1

⎤

⎥⎦ (44)

since for l < k, we have

E{ x̂̂x̂xo
l ( x̂̂x̂xo

k)′} = E{E{ x̂̂x̂xo
l ( x̂̂x̂xo

k)′|sss[1,l]}}
(a)
= E{ x̂̂x̂xo

l E{ x̂̂x̂xo
k|sss[1,l]}′}

(b)
= E{ x̂̂x̂xo

l ( x̂̂x̂xo
l )

′}(A′)k−l,

where (a) holds since x̂̂x̂xo
l is σ-sss[1,l] measurable, and (b) follows due to the iterated

expectations with nested conditioning sets, i.e., {sss[1,l]} ⊆ {sss[1,k]}.
Next, we can rewrite (42) as

min
ηk∈Υk,

k=1,...,n

n∑

k=1

Ξ
o
k + tr

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎡

⎢⎢⎢⎣

Hk
Hk−1A′

.

.

.

H1(A′)k−1

⎤

⎥⎥⎥⎦Ξk

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
+ tr

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎡

⎢⎢⎢⎢⎣

Hk AHk−1 ··· Ak−1H1

Hk−1A′ Hk−1 ··· Ak−2H1.
.
.

.

.

.
. . .

.

.

.

H1(A′)k−1 H1(A′)k−2 ··· H1

⎤

⎥⎥⎥⎥⎦
Ξ̄k

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (45)

where

Ξo
k := tr{ΣkK ′

kΔkKk} + pEΩ{ξk(ω)′Δkξk(ω)} +
1
n

G

Ξk := −2K ′
kΔk

(
(1 − p)T̄k + pEΩ{T̄A,k(ω)})

Ξ̄k := pEΩ{T̄A,k(ω)′ΔkT̄A,k(ω)} + (1 − p)T̄ ′
kΔkT̄k,

which are independent of the optimization arguments. Hence, the optimization
problem (42) faced by S can be written as an affine function of Hk’s as follows:

min
ηk∈Υk,

k=1,...,n

n∑

k=1

tr{VkHk} + Ξo, (46)

for certain symmetric deterministic matrices Vk ∈ R
m×m, k = 1, . . . , n, where

Ξo :=
∑n

k=1 Ξo
k . Note that as a sensor designer, we seek to solve this infinite-

dimensional optimization problem (46) within the general class of strategies.
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To this end, we employ the approach in [19], which considers a finite-dimensional
optimization problem that bounds the original infinite dimensional one from
below, and then, compute strategies for the original problem, which optimizes
the lower bound. Based on this, the following theorem characterizes equilibrium
achieving strategies of both agents S and C.

Theorem 2. The multi-stage static Bayesian Stackelberg equilibrium between S
and C, i.e., (6), can be attained through linear strategies, i.e., the secure sensor
outputs s[1,n] are linear in the state x[1,n] and the corresponding, friendly or adver-
sarial, control inputs, uF,[1,n] or uA,[1,n], are linear in the sensor outputs s[1,n].

Proof. Based on Lemma 1 in [19], by characterizing necessary conditions on Hk’s,
we have

min Sk∈S
m,

k=1,...,n

∑n
k=1 tr{VkSk} ≤ min ηk∈Υk,

k=1,...,n

∑n
k=1 tr{VkHk},

s.t. Σj � Sj � ASj−1A
′ ∀j

(47)

where Σj := E{xxxo
j(xxx

o
j)

′} and S
m denotes the set of m × m symmetric matrices.

Note that the left hand side of (47) is a finite-dimensional optimization, indeed an
SDP, problem. By invoking Theorem 3 in [19], we can characterize the solutions
of this SDP problem, S∗

1 , . . . , S∗
n, as

S∗
k = AS∗

k−1A
′ + (Σk − AS∗

k−1A
′)1/2Pk(Σk − ASk−1A

′)1/2, (48)

for k = 1, . . . , n, where S∗
0 = O and Pk’s are certain symmetric idempotent

matrices. Note that by solving the SDP problem numerically, we can compute
the corresponding Pk’s.

Next, say that S employs memoryless linear policies sssk = ηk(xxxF,k) = C ′
kxxxF,k

if C is friendly or sssk = ηk(xxxA,k(ω)) = C ′
kxxxA,k(ω). Then, by Lemma 3, we have

x̂̂x̂xo
k = E{xxxo

k|C ′
1xxx

o
1, . . . , C

′
kxxx

o
k}.

which can also be written as

x̂̂x̂xo
k = Ax̂̂x̂xo

k−1 + (Σk − AHk−1A
′)Ck(C ′

k(Σk − AHk−1A
′)Ck)+C ′

k(xxxo
k − Ax̂̂x̂xo

k−1),

for k = 1, . . . , n, x̂̂x̂xo
−1 := 0 and H0 := O. Therefore, Hk = E{ x̂̂x̂xo

k( x̂̂x̂xo
k)′} is given

by

Hk = AHk−1A′ + (Σk − AHk−1A′)Ck(C
′
k(Σk − AHk−1A′)Ck)

+C′
k(Σk − AHk−1A′). (49)

We emphasize the resemblance between (48) and (49). In particular, if we set
C̄k := (Σk − AHk−1A

′)1/2Ck, k = 1, . . . , n, (49) yields

Hk = AHk−1A
′ + (Σk − AHk−1A

′)1/2C̄k(C̄ ′
kC̄k)+C̄ ′

k(Σk − AHk−1A
′)1/2,

where C̄k(C̄ ′
kC̄k)+C̄ ′

k is also a symmetric idempotent matrix just like Pk in (48).
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Therefore, given Pk’s, let Pk = UkΛkU ′
k be the eigen decomposition and set

C̄k = UkΛk, i.e., set

Ck = (Σk − AS∗
k−1A

′)−1/2UkΛk. (50)

Then, we obtain Hk = S∗
k , which implies that S’s optimal strategies are mem-

oryless and linear in the underlying state. Correspondingly, the optimal control
inputs for both friendly and adversarial C are linear in the sensor outputs by
(15) or (32). �

In Table 1, we provide a numerical algorithm to design secure sensors in
advance.

Table 1. Computation of equilibrium achieving sender policies.

6 Conclusion

In this paper, we have proposed and addressed secure sensor design problem
for cyber-physical systems with linear quadratic Gaussian dynamics against the
advanced persistent threats with control objectives. By designing sensor outputs
cautiously in advance, we have sought to minimize the damage that can be caused
by undetected target-specific threats. However, this is not an active defense
strategy against a detected threat. Therefore, such a defense mechanism should
also consider the maintenance of the ordinary operations of the system. To this
end, we have modeled the problem formally in a game-theoretical setting. We
have determined the optimal control inputs for both friendly and adversarial
objectives. Then, we have characterized the secure sensor strategies, showing
that the strategies that are memoryless and linear in the underlying state lead
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to the equilibrium. Finally, we have provided an algorithm to compute these
strategies numerically.

Some future directions of research on this topic include secure sensor design
when the sensor has access to the state only partially, e.g., noisy observation,
or when the attackers infiltrate into the controller within the horizon. Note also
that we have only considered the secure sensor design within optimal control
framework. Formulations for, e.g., robust control or feedback stability of the
systems, can also be interesting future research directions.

A Appendix: Proof of Lemma4

Let yyy1 = h(xxx) and yyy2 = h(xxx+ c) be random variables, where c is a deterministic
shift vector of the same dimension as xxx. Then, for any B ∈ Bp, we have yyy−1

1 (B) =
{ω ∈ Ω : yyy1(ω) ∈ B} = {ω ∈ Ω : h(xxx)(ω) ∈ B} = {ω ∈ Ω : xxx(ω) ∈ h−1(B)}.
Correspondingly, we also have yyy−1

2 (B) = {ω ∈ Ω : yyy2(ω) ∈ B} = {ω ∈ Ω : h(xxx+
c)(ω) ∈ B} = {ω ∈ Ω : xxx(ω) ∈ h−1(B) − c}. Note that the σ-algebras generated
by the random variables yyy1 and yyy2 are given by σ(yyyi) = {yyy−1

i (B) : B ∈ Bp}, for
i = 1, 2 [3]. This implies that σ(yyy1) = {{ω ∈ Ω : xxx(ω) ∈ h−1(B)} : B ∈ Bp}
and σ(yyy2) = {{ω ∈ Ω : xxx(ω) ∈ h−1(B) − c} : B ∈ Bp}. Furthermore, for each
B ∈ Bp, there exists B2 ∈ Bp such that

h−1(B) = h−1(B2) − c ∈ Bp

since Borel sets are shift invariant [3]. Therefore, we have

σ(yyy1) = σ(yyy2) (51)

and correspondingly, we obtain (41).
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