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Abstract— We analyze in this paper how a deceptive infor-
mation provider can shape the shared information in order to
control a decision maker’s decisions. Data-driven engineering
applications, e.g., machine learning and artificial intelligence,
build on information. However, this implies that information
(and correspondingly information providers) can have influ-
ential impact on the decisions made. Notably, the information
providers can be deceptive such that they can benefit, while the
decision makers suffer, from the strategically shaped informa-
tion. We formulate (and provide an algorithm to compute) the
optimal deceptive shaping policies in the multi-stage disclosure
of, general, multi-dimensional Gauss-Markov information. To
be able to deceive the decision maker, the information provider
should anticipate the decision maker’s reaction while facing a
trade-off between deceiving at the current stage and the ability
to deceive in the future stages. We show that optimal shaping
policies are linear within the general class of Borel-measurable
policies even though the information provider and the decision
maker could be seeking to minimize quite different quadratic
cost functions.

I. INTRODUCTION

In non-cooperative multi-agent environments, agents can
leverage the asymmetry of information to impact others’
decisions. We seek to address how an agent that has access
to some time-variant information, e.g., information provider,
can control the decision of another agent by shaping the
shared information. The impact of this indirect control at-
tempt can range from negligible to severe depending on the
scenarios. For example, the impact can be as severe as fake
news during an election [1] or state censorship on media
reports to avoid public revolution [2]. Furthermore, time-
variance of the information is essential since the information
provider faces a trade-off between deceiving now and being
able to deceive in the future [3]. Here, we, specifically, focus
on deceptive shaping of time-variant information. A detailed
review of the literature for time-invariant information can be
found in [4].

Recently, in [3], the author has extended the Bayesian
persuasion model [5] to dynamic settings, where a princi-
pal (information provider) shares shaped information about
a stochastic process (over a finite alphabet) to an agent
(decision maker) with myopic objectives and a finite set
of actions. The principal commits certain shaping policies
in order to control the agent’s reaction. In [6], the authors
have studied the strategic sensor networks, where sensors
(information provider) observe Gaussian information and
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have myopic objectives while the receiver (decision maker)
makes a decision according to an affine policy after collecting
the sensor outputs. Note that since the information provider
has a myopic objective, he/she does not face a trade-off
between deceiving now and being able to deceive in the
future.

In this paper, we analyze deceptive shaping policies in the
disclosure of general multi-dimensional Gauss-Markov pro-
cesses over a finite horizon, while information provider and
the decision maker can seek to minimize different quadratic
cost functions. This extends the results in [4] to more general
settings, where the innovation in the Gauss-Markov process
can be degenerate. Particularly, we provide a unified result
for multi-stage disclosure of Gauss-Markov information that
can be from independent and identically distributed to com-
pletely correlated, i.e., time-invariant, Gaussian processes.
We show that the optimal deceptive shaping policies are
linear within the general class of Borel-measurable policies.

To this end, we formulate the functional minimization
problem faced by the information provider and derive another
finite-dimensional minimization problem that bounds the
original problem from below by computing certain necessary
conditions that the shaping policies should satisfy. This
new finite-dimensional problem is indeed a semi-definite
programming (SDP) problem. Since computing a closed-
form analytical solution for an SDP problem is challenging in
general, we have characterized the solutions by exploiting the
problem structure. Particularly, since the objective function
is linear in the optimization arguments and the constraint set
is a convex set, the solution lies at its extreme points. While
characterizing the extreme points, since we consider here
general Gauss-Markov processes, different from [4], we have
exploited the structure of the constraint set further via the
Schur complement condition for positive semi-definiteness.
After characterization, we show that certain linear shaping
policies can attain the minimum of the lower bound, and
correspondingly solve the original functional optimization
problem within the general class of Borel-measurable poli-
cies. We also provide an SDP based algorithm to compute
these optimal policies numerically.

We also note that, turning the problem around, deceptive
shaping can also be used as a defense measure against an
attacker in cyber/cyber-physical systems. Due to the asym-
metry of information, how information flows in-between
defender and attacker can play a deterministic role in who
succeeds or fails. As an example, the attacker seeks to learn
the system dynamics based on the system outputs in order to
design successful attacks by evading detection mechanisms.
However, the defender can deceptively shape the system
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Fig. 1. Deceptive information disclosure model.

outputs to control the attacker’s perception for enhanced
detection and mitigation of the attack. In that respect, in [7],
we have introduced the secure sensor design framework for
stochastic control systems that can enhance resiliency prior to
detection of any attacks with control objectives. Particularly,
sensor outputs are shaped strategically against the possibility
of the attacks that could not be detected by the intrusion
detection systems.

The paper is organized as follows: We provide the problem
formulation and the main results in Section II and III,
respectively. We provide numerical examples in Section IV.
In Section V, we conclude the paper with several remarks.
Two appendices include proofs of some of the technical
results.

II. PROBLEM FORMULATION

Consider a zero-mean discrete-time, exogenous, Gauss-
Markov process1

{xxxk ∼ N(0,Σk)} (1)

for k = 1, . . . , n, where Σk ∈ R
p. As seen in Fig. 1, we have

two agents: Sender (S) and Receiver (R). At each instant, S
shapes the state xxxk ∈ R

p and sends the shapeed information
yyyk ∈ R

p to R while R makes a decision uuuk ∈ R
r based on

the shapeed information, e.g., estimation of the true state.
Particularly, S selects the shaping policies η1(·), . . . , ηn(·)
from the corresponding policy spaces:

Ωk := {η : Rkp → R
p | η is a Borel measurable function}.

On the other side, R selects the decision policies γ1, . . . , γn
from the corresponding policy spaces:

Γk := {γ : Rkp → R
r | γ is a Borel measurable function}.

Note that ηk’s are Borel measurable functions, therefore
{yyyk} is also a well-defined random process; however, not
necessarily Markovian or Gaussian.

1Notations: For an ordered set of parameters, e.g., x1, · · · , xn, we
define x[k,l] := xk, · · · , xl, where 1 ≤ k ≤ l ≤ n. N(0, .) denotes
the multivariate Gaussian distribution with zero mean and designated
covariance. We denote random variables by bold lower case letters, e.g.,
xxx. For a vector x and a matrix A, x′ and A′ denote their transposes, and
‖x‖ denotes the Euclidean (L2) norm of the vector x. For a matrix A,
tr{A} denotes its trace. We denote the identity and zero matrices with the
associated dimensions by I and O, respectively. For positive semi-definite
matrices A and B, A � B means that A−B is also a positive semi-definite
matrix.

In this non-cooperative environment, the agents have the
following quadratic cost functions:

JS(η[1,n]; γ[1,n]) = E

{
n∑

k=1

‖QS,kxxxk −RS,kuuuk‖2
}
, (2)

JR(η[1,n]; γ[1,n]) = E

{
n∑

k=1

‖QR,kxxxk −RR,kuuuk‖2
}
, (3)

where QS,k, QR,k ∈ R
r×p and RS,k, RR,k ∈ R

r×r. We
assume that JR is a strictly convex function of the decision
uuuk, i.e., RR,k is non-singular. As an example, consider the
scenario where xxxk =

[ zzzk

θθθk

]
while zzzk and θθθk are two separate

exogenous processes. S and R seek to minimize

E

{
n∑

k=1

‖θθθk − uuuk‖2
}

and E

{
n∑

k=1

‖zzzk − uuuk‖2
}
,

respectively. In other words, R aims to learn the state zzzk
while S aims to deceive R through the shapeed information
so that R perceives the underlying state as the independent
process θθθk. Particularly, we say that S is deceptive when S
can attain smaller cost while R attains larger cost due to
the strategic shaping of the information [8]. Note that the
essence of deception is S’s ability to conjecture R’s reaction
so that he/she can select the shaping policies accordingly.
Furthermore, the agents interact multiple times. Therefore,
while controlling the transparency of the sent information,
S faces a trade-off between deceiving R at the current stage
and the ability to deceive him/her in the future stages.

Similar to the Bayesian persuasion framework [3], [5],
we consider that there is a hierarchy between the agents,
i.e., R can know S’s shaping policies while making a
decision. Furthermore, R’s reactions are unobservable and/or
noncontratable by S as in [3]. To show the dependence of
R’s policies on S’s policies, we denote them by γk(η[1,k])(·)
instead of γk(·). Then, the interaction between the agents can
be modeled as a Stackelberg game [9], where S is the leader
that announces his/her policies, and commits to employ them.
Formally, a pair of S and R policies:

(
η∗[1,n], γ

∗
[1,n]

)
attains

the Stackelberg equilibrium provided that they satisfy (4) and
(5).

In the following section, we compute the equilibrium
achieving pair of policies.

III. MAIN RESULT

Let the innovation in the process {xxxk} be denoted by
wwwk := xxxk+1 − E{xxxk+1|xxxk} and define

Ak := E{xxxk+1xxx
′
k}E{xxxkxxx

′
k}†.

Note that the auto-covariance matrix of wwwk, i.e., E{wwwkwww
′
k} �

O, can be singular, e.g., wwwk can be a degenerate random
variable. Furthermore, Ak ∈ R can be singular. Importantly,
this section generalizes the results in [4] to general Gauss-
Markov processes by relaxing the restrictions on the co-
variance of the innovation, i.e., E{wwwkwww

′
k}, and Ak. As an
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η∗[1,n] ∈ argmin
ηk∈Ωk,
k=1,...,n

E

{
n∑

k=1

∥∥∥QS,kxxxk −RS,kγ
∗
k(η[1,k])(η[1,k](xxx[1,k]))

∥∥∥2
}

(4)

γ∗
[1,n](η[1,n]) ∈ argmin

γk∈Γk,
k=1,...,n

E

{
n∑

k=1

∥∥∥QR,kxxxk −RR,kγk(η[1,k])(η[1,k](xxx[1,k]))
∥∥∥2

}
(5)

example, Ak = O and E{wwwkwww
′
k} = Σw imply indepen-

dent and identically distributed state while Ak = I and
E{wwwkwww

′
k} = O imply not evolving information.

Given the S’s shaping policies η[1,k] and shapeed informa-
tion yyy[1,k], R’s reaction uuuk is given by

uuu∗
k = (R′

R,kRR,k)
−1RR,kQR,kx̂̂x̂xk, (6)

where x̂̂x̂xk := E{xxxk|yyy[1,k]}, almost everywhere on R
p. This

yields that R’s reaction set, i.e., (5), is a singleton. Then, by
(6), S faces the following functional optimization problem:

min
ηk∈Ωk,
k=1,...,n

E

{
n∑

k=1

∥∥∥QS,kxxxk −Δkx̂̂x̂xk

∥∥∥2
}
, (7)

where Δk := RS,k(R
′
R,kRR,k)

−1RR,kQR,k. Due to the law
of iterated expectations and since x̂̂x̂xk is σ-yyy[1,k] measurable,
after some algebra, (7) can be written as

min
ηk∈Ωk,
k=1,...,n

n∑
k=1

Tr{VkHk}+Πk, (8)

where Hk := E{x̂̂x̂xkx̂̂x̂x
′
k} while Vk := Δ′

kΔk − Δ′
kQS,k −

Q′
S,kΔk and Πk := Tr{ΣkQ

′
S,kQS,k} do not depend on the

optimization arguments.
Note that in (8), S seeks to find n Borel measurable

functions, i.e., η[1,n], within the corresponding policy spaces
Ω1, . . . ,Ωn. Instead of variational calculus based approaches,
we follow here an alternative approach as step-by-step sum-
marized below:

• Compute necessary conditions on Hk

• Formulate another optimization problem bounding the
original problem from below

• Exploit the structure of the necessary conditions to char-
acterize the solutions of this new problem for the cases
where the innovation in the process can be degenerate
and Ak can be singular

• Show that for certain linear S policies, the lower bound
could be achieved in (8) and correspondingly those
policies can solve the original problem (8).

The following lemma provides an SDP problem that
bounds (8) from below by computing semi-definite matrices
that satisfy the necessary conditions on Hk.

Lemma 1 [4]. The following SDP problem bounds (8) from
below:

min
Sk∈S

p,
k=1,...,n

n∑
k=1

Tr{VkSk} (9)

subject to Σj+1 � Sj+1 � AjSjA
′
j , for j = 0, . . . , n − 1,

where S0 = O.
Proof. The proof can be found in [4]. �

Based on Lemma 1, if we can find S’s policies that
lead to a cost in (8), which is the same with the minimum
of the lower bound (9), then those policies minimize (8).
Therefore, we invoke the following theorem to characterize
the minimum of (9).

Theorem 1. For non-singular Vk ∈ S
p, the solution of (9),

i.e., S∗
1 , . . . , S

∗
n, satisfies

S∗
k = Ak−1S

∗
k−1A

′
k−1 + UkΛ

1/2
k PkΛ

1/2
k U ′

k, (10)

where the diagonal matrix Λk ∈ S
p and the unitary matrix

Uk ∈ R
p×p are obtained via the eigen decomposition of Σk−

Ak−1S
∗
k−1A

′
k−1, i.e., Σk−Ak−1S

∗
k−1A

′
k−1 = UkΛkU

′
k, and

Pk ∈ S
p are certain symmetric idempotent2 matrices.

Proof. Let Ψ ⊂ ⨉n
k=1 S

p denote the constraint set in (9).
The convexity and compactness of the constraint set Ψ follow
from the proof of Theorem 4 in [4], even though, here,
Ak ∈ R

p×p, k = 1, . . . , n, can be singular matrices. Cor-
respondingly, the solution, i.e., global minimum, is attained
at the extreme points3 of the constraint set. Therefore, if we
can compute the extreme points of the constraint set, we
would have characterized the solution of (9).

Let S−k := {S1, . . . , Sk−1, Sk+1, . . . , Sn} and consider
the sub-constraint set:

Φk(S−k) := {Sk ∈ S
p | Σk � Sk, Sk+1 � AkSkA

′
k,

Sk � Ak−1Sk−1A
′
k−1}. (11)

Then, the following lemma shows that if (S∗
1 , . . . , S

∗
n) is an

extreme point of the constraint set, e.g., the solution of (9),
then S∗

n should be an extreme point of the sub-constraint set:

Φn(S
∗
−n) = {Sn ∈ S

p | Σn � Sn � An−1S
∗
n−1A

′
n−1}.

(12)
Lemma 2 [4]. If a tuple (E1, . . . , En) is an extreme point
of the constraint set Ψ, then Ek ∈ Φk(E−k) is an extreme
point of the sub-constraint set Φk(E−k).

Proof. The proof can be found in [4]. �

Therefore, if we compute the extreme points of the sub-
constraint set for Sk given S−k, we can characterize the

2A matrix P is idempotent if P = P 2.
3An extreme point of a convex set is a point that cannot be written as a

convex combination of any other points in the interior of the set.
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extreme points of the constraint set Ψ, and correspondingly
the solution of (9). Note that the sub-constraint set Φn(S

∗
−n)

yields

Σn −An−1S
∗
n−1A

′
n−1 � Sn −An−1S

∗
n−1A

′
n−1 � O.

(13)

Let Σn − An−1S
∗
n−1A

′
n−1 ∈ S

p have the eigen decomposi-
tion: Σn −An−1S

∗
n−1A

′
n−1 = UnΛnU

′
n; then we have

Λn � Fn(Sn) � O, (14)

where Fn : S
p → S

p is a bijective affine transformation
defined by

Fn(S) := U ′
n(S −An−1S

∗
n−1A

′
n−1)Un, (15)

and let Fn := Fn(Sn).
Note that Σn−An−1S

∗
n−1A

′
n−1 is a positive semi-definite

matrix, and therefore, might have zero eigenvalues. There-
fore, we partition the diagonal matrix Λn and Fn as follows:

Λn =
[
Λ(11)

n O
O O

]
and Fn =

[
F (11)

n F (12)
n

F (21)
n F (22)

n

]
. (16)

We also note that partitions of an arbitrary positive semi-
definite matrix X should satisfy the Schur complement
condition for positive semi-definiteness [10]:

X =
[

A B
B′ C

] � O

⇔ A � O, C −B′A†B � O, (I −AA†)B = O

⇔ C � O, A−BC†B′ � O, (I − CC†)B′ = O. (17)

Then, (14) yields

Λn − Fn =
[
Λ(11)

n −F (11)
n −F (12)

n

−F (21)
n −F (22)

n

]
� O, (18)

which implies F
(22)
n 	 O by (17). However, Fn � O also

implies F
(22)
n � O by (17). Therefore, we can conclude that

F
(22)
n = O. Furthermore, the following lemma shows that

F
(12)
n = (F

(21)
n )′ = O, since F

(22)
n = O and Λn − Fn � O.

Lemma 3. For a semi-definite matrix X that can be parti-
tioned as X =

[
A B
B′ O

]
, we have

X =
[

A B
B′ O

] � O ⇔ A � O, B = O. (19)

Proof. The proof is provided in Appendix I. �

By invoking Lemma 3, we obtain

Λn � Fn � O ⇔

⎧⎪⎨
⎪⎩

Λ
(11)
n � F

(11)
n � Ot,

F
(12)
n = (F

(21)
n )′ = Ot×(p−t),

F
(22)
n = Op−t,

(20)

where t = rank(Σn − An−1S
∗
n−1A

′
n−1). In particular, in a

more explicit form, if Sn ∈ Φn(S
∗
−n), then

Λ(11)
n � [ IO ]Fn(Sn) [ IO ]

′ � Ot and

Fn(Sn)− [ IO ]Fn(Sn) [ IO ]
′
= Op. (21)

This explicit representation will be helpful while computing
the extreme points of the sub-constraint set Φn(S

∗
−n).

Set D 

Set R 

Point A 

Point B 

Fig. 2. Over R2, affine transformation of a compact and convex set D to a
compact and convex set R. The filled circles denote the extreme points. Note
that under affine, and yet not necessarily bijective, transformation, extreme
points are not invariant. As an example, A is an extreme point of Set D
while the transformed A is not an extreme point of Set R. Furthermore,
B is a non-extreme point of Set D while the transformed B is an extreme
point of Set R.

We note that under a bijective affine transformation, the
extreme points are mapped to the extreme points of the
transformed set [11]. Therefore, if Sn ∈ Φn(S

∗
−n) is an

extreme point of Φn(S
∗
−n), then Fn = Fn(Sn) is an extreme

point of the transformed sub-constraint set Fn(Φn(S
∗
−n)).

Next, consider the following affine, yet not necessarily
bijective, transformation Ln : Sp → S

p:

Ln(F ) := (Λ†
n)

1/2F (Λ†
n)

1/2. (22)

Further, let P := Ln(Fn(Sn)); then (20) implies that the
partitions of P ∈ S

p should satisfy

It � P (11) � Ot,

P (12) = (P (21))′ = Ot×(p−t),

P (22) = Op−t.

Therefore, the composition of the transformations Ln ◦ Fn

can map the sub-constraint set Φn(S
∗
−n) to

Ln ◦ Fn(Φn(S
∗
−n)) = {P ∈ S

p | It � P (11) � Ot,

P (12) = (P (21))′ = Ot×(p−t), and P (22) = Op−t}.
Recall that if Sn is an extreme point of Φn(S

∗
−n),

then Fn = Fn(Sn) is an extreme point of Fn(Φn(S
∗
−n))

since Fn is a bijective affine transformation. However, the
transformation Ln is not bijective. And as shown in Fig.
2 via a contradicting example, under affine, and yet not
necessarily bijective, transformation, the extreme points may
not be preserved. In other words, a transformed extreme
point can be a non-extreme point of the transformed set or
a transformed non-extreme point can be an extreme point of
the transformed set, in general. Therefore, in the following,
we examine the transformation in more detail to figure out
whether the extreme points would be preserved under Ln◦Fn

or not, especially over Φn(S
∗
−n).
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Suppose that Fn is an extreme point of Fn(Φn(S
∗
−n))

while Ln(Fn) is not an extreme point of Ln◦Fn(Φn(S
∗
−n)).

This implies that there exist two different M,N ∈ Ln ◦
Fn(Φn(S

∗
−n)) such that

Ln(Fn) = νM + (1− ν)N, (23)

for some ν ∈ (0, 1). Since M,N ∈ Ln ◦ Fn(Φn(S
∗
−n)),

there exist two different M̄, N̄ ∈ Fn(Φn(S
∗
−n)) such that

Ln(M̄) = M and Ln(N̄) = N . Then, (23) yields

Ln(Fn) = νLn(M̄) + (1− ν)Ln(N̄). (24)

Since Ln is an affine transformation, (24) leads to

Ln(Fn − νM̄ − (1− ν)N̄) = O (25)

while Fn, M̄ , and N̄ ∈ Fn(Φn(S
∗
−n)), and therefore satisfy

(21). Note also that the pseudo inverse of Λn is given by

Λ†
n =

[
(Λ(11)

n )−1 O
O O

]
(26)

while (21) implies

F (12)
n = (F (21)

n )′ = O, F (22)
n = O, (27a)

M̄ (12) = (M̄ (21))′ = O, M̄ (22) = O, (27b)

N̄ (12) = (N̄ (21))′ = O, N̄ (22) = O. (27c)

Therefore, by (22), (25) can also be written as[
(Λ(11)

n )−1 O
O O

] [
F (11)

n −νM̄(11)−(1−ν)N̄(11) O
O O

] [
(Λ(11)

n )−1 O
O O

]
= Op,

which implies

(Λ(11)
n )−1(F (11)

n − νM̄ (11) − (1− ν)N̄ (11))(Λ(11)
n )−1 = Ot,

or equivalently,

F (11)
n = νM̄ (11) + (1− ν)N̄ (11). (28)

However, (27) and (28) yield Fn = νM̄ + (1 − ν)N̄ ,
which contradicts with the assumption that Fn is an extreme
point of Fn(Φn(S

∗
−n)) since ν ∈ (0, 1) and M̄, N̄ ∈

Fn(Φn(S
∗
−n)). Therefore, we can conclude that if Sn is an

extreme point of Fn(Φn(S
∗
−n)), then P = Ln ◦ Fn(Sn) is

an extreme point of Ln ◦ Fn(Φn(S
∗
−n)).

Furthermore, suppose P is an extreme point of Ln ◦
Fn(Φn(S

∗
−n)). Then, there exists a point P = Ln(F ),

i.e., inverse image4 of P , in Fn(Φn(S
∗
−n)). Assume that

F is not an extreme point of Fn(Φn(S
∗
−n)). This implies

that there exist M̄, N̄ ∈ Fn(Φn(S
∗
−n)) such that F =

νM̄ + (1 − ν)N̄ , for some ν ∈ (0, 1). Then, there exist
M,N ∈ Ln ◦ Fn(Φn(S

∗
−n)) such that M = Ln(M̄) and

N = Ln(N̄). Note that M and N can be the same even
though M̄ �= N̄ . However, (21) implies that

M̄ (12) = (M̄ (21))′ = O and M̄ (22) = O,

N̄ (12) = (N̄ (21))′ = O and N̄ (22) = O.

Therefore, M̄ (11) �= N̄ (11) since M̄ �= N̄ ; and correspond-
ingly M �= N due to (22) and (26). However, since Ln

4The inverse image may not be unique since Ln is not a bijective map.

is an affine map, this yields that P = νM + (1 − ν)N ,
for some ν ∈ (0, 1) and M �= N , which contradicts with
the assumption that P is an extreme point. Therefore, by
contradiction, we can conclude that if P is an extreme point
of Ln ◦ Fn(Φn(S

∗
−n)), then there exists S ∈ Φn(S

∗
−n) such

that P = Ln◦Fn(S) and S is an extreme point of Φn(S
∗
−n).

Particularly, if we can compute the extreme points of
Φ̄n := Ln ◦ Fn(Φn(S

∗
−n)), which can also be written as

Φ̄n =

{
P =

[
P (11) P (12)

P (21) P (22)

]
∈ S

p | It � P (11) � Ot,

P − P (11) = Op

}
, (29)

we can compute the extreme points of Φn(S
∗
−n) and

correspondingly we would have characterized the solution
of (9). To this end, we invoke the following lemma
that characterizes the extreme points of the convex set
Φ := {P ∈ S

p | I � P � O}.

Lemma 4 [4]. A point Pe ∈ Φ is an extreme point if, and
only if, Pe is a symmetric idempotent matrix.

Proof. The proof can be found in [4]. �

Based on Lemma 4, we can conclude that if P is an ex-
treme point of Φ̄, then P (11) must be a symmetric idempotent
matrix, and therefore, P is a symmetric idempotent matrix
by (29). This yields that the extreme points of Φn(S

∗
−n) are

given by

Sn = An−1S
∗
n−1A

′
n−1 + UnΛ

1/2
n PnΛ

1/2
n U ′

n, (30)

where Pn is a symmetric idempotent matrix. We note that
each S∗

k is an arbitrary point in the corresponding sub-
constraint set Φk(S

∗
−k). Therefore, at stage n − 1, we have

the sub-constraint set:

Φn−1(S
∗
−(n−1)) = {Sn−1 ∈ S

p | Σn−1 � Sn−1,

S∗
n � An−1Sn−1A

′
n−1, Sn−1 � An−2S

∗
n−2A

′
n−2}.

(31)

If S∗
n is given according to (30), then we have

An−1Sn−1An−1 + UnΛ
1/2
n PnΛ

1/2
n U ′

n � An−1Sn−1An−1

since UnΛ
1/2
n PnΛ

1/2
n U ′

n � O, and the sub-constraint set
Φn−1(S

∗
−(n−1)) can be written as

Φn−1(S
∗
−(n−1)) = {Sn−1 ∈ S

p | Σn−1 � Sn−1,

Sn−1 � An−2S
∗
n−2A

′
n−2}. (32)

Correspondingly, if S∗
n is an extreme point of Φn(S

∗
−n),

given by (30), then the extreme points of Φn−1(S
∗
−(n−1))

are given by

Sn−1 = An−2S
∗
n−2SA

′
n−1 + Un−1Λ

1/2
n−1Pn−1Λ

1/2
n−1Un−1

where Pn−1 is a symmetric idempotent matrix. Therefore,
following identical steps, we obtain that any extreme point
(S∗

1 , . . . , S
∗
n) of the constraint set Ψ, i.e., the solution of

(9), should satisfy (10). �
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Remark. If Vk’s are singular, there might be other solutions
of (9) that are non-extreme points of the constraint set Ψ. As
a trivial example, if all Vk = O, any point in the constraint
set is a solution of (9). We emphasize that the solutions in
the form of (10) are essential in our formulation since our
main purpose is to compute the best S policies, i.e., η[1,n], for
the original optimization problem (8) instead of computing
(S∗

1 , . . . , S
∗
n) for the lower bound (9). And as we will show

later in this section, this characterization implies that the
lower bound could be achieved via certain S strategies. To
address non-singularity issues that can arise due to Vk’s, we
can write the lower bound SDP problem (9) as

min
(S1,...,Sn)∈Ψ

lim
μ→0

n∑
k=1

Tr{(Vk + μI)Sk}, (33)

or equivalently, as shown in Appendix II,

lim
μ→0

min
(S1,...,Sn)∈Ψ

n∑
k=1

Tr{(Vk + μI)Sk}. (34)

Therefore, we can set a μ > 0 such that5

min
(S1,...,Sn)∈Ψ

n∑
k=1

Tr{(Vk + μI)Sk}

− min
(S1,...,Sn)∈Ψ

n∑
k=1

Tr{VkSk} < ε, (35)

for any ε > 0; and the solution of

min
(S1,...,Sn)∈Ψ

n∑
k=1

Tr{(Vk + μI)Sk} (36)

is characterized by (10) in Theorem 1.

Based on Theorem 1, the following theorem shows that
for any solution of the lower bound (9), e.g., S∗

1 , . . . , S
∗
n, S

can select certain linear shaping policy, e.g.,

yyyk = L′
kxxxk, (37)

almost everywhere over R
p, such that Hk = S∗

k , and
correspondingly the linear shaping policies L1, . . . , Ln

minimizes (8).

Theorem 2. Given the solution S∗
1 , . . . , S

∗
n of the lower

bound (9), the corresponding symmetric and idempotent
matrices P1, . . . , Pn could be computed via (10). Let Σk −
Ak−1S

∗
k−1A

′
k−1 and Pk have the eigen decompositions:

Σk − Ak−1S
∗
k−1A

′
k−1 = UkΛkU

′
k and Pk = ŪkΛ̄kŪ

′
k,

respectively. Then, linear shaping policy (37), where Lk is
given by

Lk = U ′
k(Λ

1/2
k )†ŪkΛ̄k (38)

yields the hierarchical equilibrium and minimizes (8) within
general class of policies.

5Note that for all k = 1, . . . , n, Sk � O, and therefore Tr{Sk} ≥ 0.

Proof. Consider that S has selected the shaping policies
according to (37). Correspondingly, x̂̂x̂xk is given by

x̂̂x̂x1 = Σ1L1(L
′
1Σ1L1)

†L′
1xxx1,

x̂̂x̂xk = Ak−1x̂̂x̂xk−1 + (Σk −Ak−1Hk−1A
′
k−1)

× Lk(L
′
k(Σk −Ak−1Hk−1A

′
k−1)Lk)

†L′
k(xxxk −Ak−1x̂̂x̂xk−1),

for k ≥ 2 [12]. This yields that Hk = E{x̂̂x̂xkx̂̂x̂x
′
k} is given by

H1 = Σ1L1(L
′
1Σ1L1)

†L′
1Σ1,

Hk = Ak−1Hk−1A
′
k−1 + (Σk −Ak−1Hk−1A

′
k−1)

× Lk(L
′
k(Σk −Ak−1Hk−1A

′
k−1)Lk)

†L′
k

× (Σk −Ak−1Hk−1A
′
k−1)

′, (39)

for k ≥ 2. Then, consider the eigen decomposition of
Σk − Ak−1Hk−1A

′
k−1 = Uk−1Λk−1U

′
k−1. Then, (39) can

be written as

H1 = U1Λ1U1L1(L
′
1U1Λ1U

′
1L1)

†L′
1U1Λ1U1,

Hk = Ak−1Hk−1A
′
k−1 + UkΛkU

′
k

× Lk(L
′
kUkΛkU

′
kLk)

†L′
kUkΛkU

′
k, (40)

for k ≥ 2. We point out the resemblance between Sk in (10)
and Hk in (39). Particularly, if we let Ck := Λ

1/2
k UkLk, then

we can write (40) as

H1 = U1Λ
1/2
1 C1(C′

1C1)†C′
1Λ

1/2
1 ,

Hk = Ak−1Hk−1A
′
k−1 + UkΛ

1/2
k Ck(C′

kCk)†C′
kΛ

1/2
k U ′

k,

for k ≥ 2.
Note that Ck := Ck(C′

kCk)†C′
k is a symmetric idempotent

matrix, which can be partitioned by

Ck =
[

C
(11)
k Ot×(p−1)

O(p−t)×t Op−t

]
, (41)

where t = rank(Σk−Ak−1Hk−1A
′
k−1). Furthermore, recall

that any solution (10) of the lower bound should satisfy:

S∗
k = Ak−1Sk−1A

′
k−1+UkΛ

1/2
k

[
P

(11)
k Ot×(p−t)

O(p−t)×t Op−t

]
︸ ︷︷ ︸

= Pk

Λ
1/2
k U ′

k.

If we let Pk have the eigen decomposition: Pk = ŪkΛ̄kŪ
′
k

and let S set the shaping policies such that Ck = ŪkΛ̄k,
which implies (38), then we obtain Hk = S∗

k for
k = 1, . . . , n. Hence, the linear shaping policy (37), where
Lk is given by (38), minimizes the original problem (8)
within the general class of policies. This completes the
proof. �

In Table I, we provide a description of the deceptive
shaping algorithm.

IV. ILLUSTRATIVE EXAMPLES

As numerical illustrations, we consider specific dynamic
information disclosure scenarios where xxxk =

[ zzzk

θθθk

] ∈ R
2

while zzzk ∈ R and θθθk ∈ R are two separate stationary
exogenous processes. S and R seek to minimize

E

{
n∑

k=1

‖zzzk + θθθk − uuuk‖2
}

and E

{
n∑

k=1

‖zzzk − uuuk‖2
}
,
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TABLE I
A DESCRIPTION TO COMPUTE OPTIMAL DECEPIVE SHAPING POLICIES.

Algorithm: Deceptive shaping

SDP Problem:

Compute Vk , ∀k.

Solve the SDP problem (9) through a numerical toolbox

and obtain the solution S∗
k , ∀k.

Set S∗
0 = O.

Equilibrium achieving policies:

Compute the corresponding idempotent matrices Pk ,∀k,

by using S∗
k , ∀k, and (10).

Compute the eigen decompositions:

Σk −Ak−1S
∗
k−1Ak−1 = UkΛkU

′
k .

Compute the eigen decompositions: Pk = ŪkΛ̄kŪ
′
k .

Compute Lk , ∀k, by using Ūk, Λ̄k, Uk,Λk , and (38).
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0.6
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0.8

0.9
αk for different time horizons

α k

Stage, k

Fig. 3. Scenario 1: the process {zzzk} evolves according to (42) while {θθθk}
is time invariant. The weight of θθθk in the disclosed information zzzk+αkθθθk
increases over time.

respectively. Note that these scenarios generalize the infor-
mation disclosure setup in [13] to dynamic settings. We
consider two different scenarious:

In Scenario 1, the stationary process {zzzk ∼ N(0, 1)}
evolves according to

zzzk+1 =
1

2
zzzk +wwwk, (42)

where {wwwk ∼ N(0, 3/4)} is a white Gaussian process that
is independent of all the other parameters, and the process
{θθθk = θθθ ∼ N(0, 1)} is time-invariant. Particularly, while R
seeks to learn a dynamic process, S wants R to perceive
the process as its time-invariant shift. Even though the
disclosed information is 2-dimensional, yyyk = Lkxxxk ∈ R

2,
we have observed that all optimal Lk’s turn out to have
rank 1. Correspondingly, the disclosed information can be
written as zzzk + αkθθθk, where αk ∈ R is a certain constant.
In Fig. 3, we plot αk for different time horizons, e.g.,

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5
αk for different time horizons

α k

Stage, k

Fig. 4. Scenario 2: the process {zzzk} is time invariant while {θθθk} evolves
according to (43). The weight of θθθk in the disclosed information zzzk+αkθθθk
decreases over time.

10, 20, . . . , 100, which shows that the weight of θθθk increases
in time. Since R can learn the static θθθk and can cancel out
it in the disclosed information to some extent, the disclosed
information becomes less and less informative in terms of
zzzk compared to previously disclosed information.

In Scenario 2, we consider the reverse of Scenario 1, i.e.,
now, the process {zzzk = zzz ∼ N(0, 1)} is time invariant while
the stationary process {θθθk ∼ N(0, 1)} evolves according to

θθθk+1 =
1

2
θθθk + vvvk, (43)

where {vvvk ∼ N(0, 3/4)} is a white Gaussian process that is
independent of all the other parameters. In other words, while
R seeks to learn a static parameter, S wants R to perceive the
process as its time-variant shift. We have again observed that
all optimal Lk’s turn out to have rank 1. In Fig. 4, we plot
αk in the disclosed information zzzk+αkθθθk for different time
horizons: n = 10, 20, . . . , 100, which shows that the weight
of θθθk decreases in time. Note that R can learn the static zzzk to
some extent. Since S aims uuuk to be close to θθθk, the disclosed
information zzzk + αkθθθk should have more impact on R’s
perception, i.e., uuuk, and correspondingly should be relatively
more informative in terms of zzzk compared to previously
disclosed information.

V. CONCLUSION

In this paper, we have analyzed how a deceptive informa-
tion provider can shape a general (multi-dimensional) Gauss-
Markov process in order to control a decision maker’s de-
cisions over finite horizon. The information provider should
control the transparency of the shared information to deceive
the decision maker now and to be able to deceive in the
future. By considering general Gauss-Markov processes, we
have provided a unified result for various type of infor-
mation, from an independently and identically distributed
to time-invariant Gaussian processes. We have shown that
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the optimal deceptive shaping policies are linear within the
general class of Borel-measurable policies even though the
information provider and the decision maker can seek to min-
imize quite different quadratic cost functions. We have also
provided an SDP based algorithm to compute the optimal
policies numerically. Some future directions of research on
this topic include analysis of deceptive shaping policies over
an infinite decision-making horizon and dynamic disclosure
of continuous-time Gauss-Markov information.

APPENDIX I
PROOF OF LEMMA 2

Let us first consider a 2-dimensional matrix M2 :=[
a b
b 0

] � O. Then, by (17), we have6

[
a b
b 0

] � O ⇔ a ≥ 0, and
{ −b2a ≥ 0 if a > 0

b = 0 if a = 0.
(44)

However, if a > 0, then −b2a ≥ 0 implies b = 0; and if
a = 0, then b = 0. Therefore, (44) is equivalent to[

a b
b 0

] � O ⇔ a ≥ 0, b = 0. (45)

Alternatively, determinant is non-negative if, and only if, b =
0 and non-negative determinant is a necessary condition for
positive semi-definiteness.

Next, consider a 3-dimensional matrix

M3 :=
[
a b c
b d e
c e 0

]
� O.

Then, (17) implies that the right bottom sub-matrix [ d e
e 0 ] �

O. Therefore, by (45), we can conclude that e = 0, which
yields

M3 =
[
a b c
b d 0
c 0 0

]
.

Through the similarity transformation of M3 with a certain
permutation matrix P , we obtain PM3P

′ as

M̄3 :=
[

1
1

1

] [
a b c
b d e
c e 0

] [
1

1
1

]
=

[
d b 0
b a c
0 c 0

]
.

Note that positive semi-definiteness is preserved under sim-
ilarity transformation [14]. However, by (17), M̄3 � O
implies that the right bottom sub-matrix [ a c

c 0 ] � O, and (45)
yields c = 0. Therefore, we have[

a b c
b d e
c e 0

]
� O ⇔ [

a b
b d

] � O and c, e = 0.

By induction, we can conclude that, for A ∈ R
p×p and b ∈

R
p, we obtain[

A b

b′ 0

]
� O ⇔ A � O and b = 0. (46)

Based on (46) and through the similarity transformations
with certain permutation matrices, we can also obtain (19).
This completes the proof.

6For a scalar a ∈ R, if a = 0, a† = 0, else a† = 1/a.

APPENDIX II
EQUIVALENCE OF (33) AND (34):

Consider the function J : [0, 1]×Ψ → R, given by

J(μ, S) :=

n∑
k=1

Tr{(Vk + μI)Sk}, (47)

where S := (S1, . . . , Sn). Then, the function is uniformly
continuous on the compact set [0, 1]×Ψ, which implies that,
for any (μo, So), (μ, S) ∈ [0, 1]×Ψ, given ε > 0, there exists
δ > 0 such that

J(μo, So) < J(μ, S) + ε (48)

if7 ‖S − So‖ < δ and |μ − μo| < δ. Furthermore, consider
the function G : [0, 1] → R, given by

G(μ) := min
(S1,...,Sn)∈Ψ

n∑
k=1

Tr{(Vk + μI)Sk}. (49)

Then, we have G(μo) ≤ J(μo, So) and there exists S ∈ Ψ
such that J(μ, S) = G(μ). Therefore, by (48), we obtain that
given ε > 0, there exists δ > 0 such that G(μo) < G(μ) + ε
if |μ − μo| < δ. Symmetry of the arguments yields that
|G(μo) − G(μ)| < ε when |μ − μo| < δ; hence G is a
continuous function of μ and the problems (33) and (34) are
equivalent.
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