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Abstract— We consider stochastic dynamic game problems
where a trajectory controller takes an action to construct
an information bearing signal, namely the control input, and
subsequently a tracking system takes an action, i.e., constructs a
tracking output, based on the control input. The trajectory con-
troller has access to two Gaussian processes evolving according
to first-order autoregressive models, e.g., desired and private
states. Different from the design of a measurement or sensing
scheme for a tracking system, here the trajectory controller and
the tracker have different objectives. Particularly, the trajectory
controller aims to drive the tracking system to a desired path,
different from the tracker’s actual intent, by constructing the
measurement signal. For finite horizon problems involving two
different quadratic cost functions, we show that the optimal
control input policies are linear functions of the current states
when the states evolve in parallel. We then extend this result for
the general case when the trajectory controller has a myopic
objective and show that the optimal control input policies are
also linear functions of the current states. Finally, we restrict
the policy space for the control input to the set of all linear
mappings of the current states and convert the finite horizon
stochastic game problem into a discrete time deterministic
optimal control problem. We also include some illustrative
numerical examples for different strategic control scenarios.

I. INTRODUCTION

Along with the increased efficiency in the data transmis-

sion and the enhanced processing performance of sensors,

there is an increasing demand for simultaneous design of

measurement, estimation, and control architectures in decen-

tralized systems [1]–[5]. In such problems, at each instant,

decisions, e.g., estimation or control, are made based on the

received information from the measurement devices. Due to

the improved processing capabilities of these devices, the

measurements can also be processed with respect to the

objective of the decision maker rather than a direct trans-

mission, which improves the performance in decentralized

systems [4]. Additionally, due to time delay and processing

power related concerns, low complexity, such as linear,

strategies play an important role in simultaneous measure-

ment and decision making. As an example, for decentralized

control with feedback, reference [1] has studied a stochastic

dynamic decision problem in which both the transmitted in-

formation from the measurement device and the consecutive

decision made by the controller are designed together. For

stochastic control problems with Gaussian states evolving
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according to first order autoregressive models, it was shown

that the optimal measurement strategy is a linear function

of the innovation in the measurement, i.e., new information

given the previous measurements. Correspondingly, due to

the linear measurement policy, the optimal control policy is

a linear function of the measurement signal. Continuous-time

version of this joint design problem was also addressed, in

[6]. In [5], the authors study real-time tracking of Gaussian

processes that evolve according to first order autoregressive

models over an additive white Gaussian noise channel, with-

out feedback, and also show the optimality of the innovation

encoder. However, in all these studies, the measurement and

the decision devices cooperate to achieve a common goal.

Departing from the paradigm of cooperative design, we

consider in this paper a strategic environment where the

information provider and the decision maker have different

objectives, and therefore take actions in a non-cooperative

manner. Originally, such a scheme, namely strategic in-

formation transmission, has been introduced in a seminal

Econometrica paper by V. Crawford and J. Sobel [7], and

attracted significant attention in the economics literature due

to the wide range applications from advertising to expert

advise sharing problems [8]–[10]. Here, the transmitter has

access to a source output and a private bias information, and

sends a message to the receiver to maximize a utility func-

tion depending on the receiver’s action and the information

regarding the source output and private bias. On the other

side, the receiver takes an action based on the transmitter’s

message in order to maximize a different utility function

that is independent of the private information. Under Nash

equilibrium, in which the players announce their strategies

simultaneously, the authors have shown that a quantization-

based mapping of the source and the private information

achieves the equilibrium [7]. In [11], the authors extend

the one-shot game of strategic information transmission to

a multi-stage one with a finite horizon, such that the infor-

mation provider and decision makers interact several times

regarding a constant unknown state of the world. Recently,

references [12], [13] have studied strategic information trans-

mission strategies under a different equilibrium concept, the

Stackelberg equilibrium, where there is a hierarchy in the

announcement of the strategies, and have shown that for

the quadratic-Gaussian case, equilibrium achieving strategies

are linear functions of the source output and the private

information, in contrast to the quantized schemes that emerge

under Nash equilibrium.

In this paper, we consider a strategic environment in

which the measurement device, i.e., a trajectory controller,

and the decision device, i.e., a tracking system, have dif-
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Fig. 1: The trajectory controller and the tracking system at

time instant k.

ferent objectives, i.e., they do not cooperate. As seen in

Fig. 1, the trajectory controller has access to two different

Gaussian processes, i.e., desired and private states, that

evolve according to first order autoregressive models. And

the tracking system tracks the desired state through the

information provided by the trajectory controller. However,

the controller has a different objective, such that the output

of the tracking system tracks the sum of the desired and

the private states, and hence it constructs the transmitted

information, i.e., the control input, accordingly. We assume

that the tracking system has complete knowledge about the

control input as in the general case [14]. We further assume

that there is a hierarchy between the trajectory controller

and the tracking system such that the trajectory controller

announces the policies in the construction of the control

input beforehand. The difference between the objectives and

the hierarchy between the systems correspond to a dynamic

Stackelberg game between the trajectory controller and the

tracking system. We point out that different from [11], here

not only the players interact with each other several times

but also the underlying states evolve in time, i.e., they are

not constants.

For finite horizon problems with two different quadratic

cost functions, we show that the optimal control policies are

linear functions of the current states when the states evolve

in parallel and correspondingly, the output of the tracking

system is a linear function of the received control inputs.

For the general case, we prove that the optimal control input

policies are also linear functions of the current states if the

trajectory controller has a myopic objective rather than a

finite horizon goal. Finally, restricting the policy space for

the control input into the set of all linear mappings of the

current states, we show that the dynamic game problem can

be considered as a discrete time optimal control problem.

We can list the main features of this paper as follows:

(1) We study a dynamic Stackelberg game of strategic

information transmission where the players interact several

times regarding unknown, time-variant states of the world.

(2) We show that when the states evolve in parallel, linear

policies can lead to a Stackelberg equilibrium with a finite
horizon as in the one-shot case [12], [13]. (3) For myopic

objectives, we show that optimal control input policies are

linear functions of the current states within the general class

of the policies, i.e., without an a priori linearity restriction

as in [15].

We organize the paper as follows. In Section II, we de-

scribe the problem. In Section III, we analyze the optimality

of linear policies. We formulate the myopically optimal

policies in Section IV. In Section V, we analyze the optimal

linear policies for the finite horizon problem. In Section VI,

we provide numerical examples for different strategic control

scenarios. We conclude the paper in Section VII.

II. PROBLEM FORMULATION

Consider two discrete-time, scalar, stationary processes

{xk}, the desired state, and {θk}, the private state, evolving

according to the following autoregressive model[
xk+1

θk+1

]
=

[
a 0
0 b

][ xk
θk

]
+
[wk

vk

]
, k = 1,2, · · · , (1)

where |a|< 1, |b|< 1, x1 ∼N (0,σ2
x ), θ1 ∼N (0,σ2

θ ), and1

x1 ⊥⊥ θ1. The noise processes {wk},{vk} are white Gaussian

such that wk ∼N (0,σ2
w), vk ∼N (0,σ2

v ) are independent of

each other, and of the current states xk and θk.

We consider a strategic environment where the trajectory

controller and the tracking system have different objectives.

As seen in Fig. 1, at each instant k, the trajectory controller

has access to the desired and the private states, i.e., x[1,k] :=
x1, · · · ,xk and θ[1,k] := θ1, · · · ,θk, and constructs yk ∈ R,

namely the control input, which is fully determined by the

conditional distribution p(·|x[1,k],θ[1,k]) as

P(yk ∈ Y ) =
∫

y∈Y
p(y|x[1,k],θ[1,k])dy ∀ Y ⊆ R

holds almost everywhere in x[1,k] and θ[1,k]. With an abuse

of notation, we denote this function by yk = yk(x[1,k],θ[1,k])
and the set of all such Lebesgue-measurable functions from

R
k×R

k to R by Γk. Correspondingly, the tracking system

receives the control input yk and has a memory such that the

output of the tracking system x̂k is fully determined by the

conditional distribution p(·|y[1,k]) as

P(x̂k ∈X ) =
∫

x̂∈X
p(x̂|y[1,k])dx̂ ∀X ⊆ R

holds almost everywhere in y[1,k]. We denote this function by

x̂k = x̂k(y[1,k]) and the set of all such Lebesgue-measurable

functions from R
k to R by Ωk.

The tracking system aims to track the desired state xk
through a finite horizon objective

min
x̂k(·)∈Ωk,
∀k∈{1,··· ,n}

n

∑
k=1

E

{(
xk− x̂k

(
y[1,k]

))2
}
. (2)

whereas the trajectory controller aims x̂k to track xk + θk
through

min
yk(·,·)∈Γk,
∀k∈{1,··· ,n}

n

∑
k=1

E

{(
xk +θk− x̂k

(
y[1,k]

))2
}
. (3)

1As notation, ⊥⊥ denotes independence and N (0, ·) denotes the Gaussian
distribution with zero mean and designated variance.
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Note that even though the tracking system has a finite

horizon objective, as seen in Fig. 1, the scheme involves no

feedback channel from the tracking system to the trajectory

controller. Hence, the tracking outputs have no impact on

the forthcoming control inputs, which yields that we can

consider the finite horizon objective (2) as a myopic objective

min
x̂k(·)∈Ωk

E
{
(xk− x̂k(y[1,k]))

2
}
. (4)

On the contrary, while constructing the control inputs, the

trajectory controller should consider the impact of yk in the

forthcoming steps. Here, we assume that the systems are

aware of the differences between their objectives (3) and

(4), and all the statistics are common knowledge. Since the

objectives (3) and (4) differ, this scheme corresponds to a

game problem between the players: the trajectory controller

and the tracking system. Mainly, there are two approaches to

such game problems [16]. In the Nash equilibrium, the play-

ers simultaneously take actions. Particularly, the trajectory

controller chooses a policy for the control input yk from the

policy space Γk and the tracking system chooses a policy for

the output x̂k from the policy space Ωk. Once the policies are

announced, the players cannot change their actions. Hence,

the Nash equilibrium has the players adopt their policies

such that they would have no incentive to change their

actions unilaterally. In the Stackelberg equilibrium, there is

a hierarchy between the players such that one of the players,

namely the leading player, takes action beforehand knowing

that the other player will take the best response against

his/her action [17].

In this paper, we focus on the Stackelberg equilibrium in

which the trajectory controller leads the game by announcing

the policy in the construction of the control inputs. We point

out that given the transmitted control inputs, the reaction set

of the tracker is a singleton. Hence, for any given control

inputs y1, · · · ,yn, the best reaction of the tracker is given by

x̂∗k(y[1,k]) = arg min
x̂(·)∈Ωk

E{(xk− x̂)2}, (5)

for each k = 1,2, · · · ,n. Correspondingly, the optimal control

inputs y∗1, · · · ,y∗n, i.e., the policies yielding the Stackelberg

equilibrium (5), are constructed according to the best reaction

of the tracker (5). Further, in the construction of the optimal

control inputs, the controller faces the following minimiza-

tion problem with finite horizon:

min
yk(·,·)∈Γk,
∀k∈{1,··· ,n}

n

∑
k=1

E

{(
xk +θk− x̂∗k(y[1,k])

)2
}
. (6)

We also study the scenarios when the trajectory controller

has a myopic objective, which results in the following

minimization problem for the controller:

y∗k = arg min
yk(·,·)∈Γk

E
{
(xk +θk− x̂∗k(y[1,k]))

2
}
. (7)

In the myopic scenario (7), the controller takes action by

considering only the current stage irrespective of the actions’

impact on future stages.

In the next section, we discuss the scenarios in which

linear control strategies achieve the equilibrium with respect

to (5) and (6).

III. OPTIMALITY OF THE LINEAR CONTROL FOR FINITE

HORIZON COSTS

We point out that for n = 1, the controller has access to

a single desired source x and a single private source θ . The

tracking system, or the estimator, since the states do not

evolve in time, aims to minimize

E{(x− x̂(y))2}, (8)

through x̂(y) over all Lebesgue measurable functions from

R to R. In particular, x̂(y) denotes the estimate obtained

through the control input y while the controller constructs

that information such that

E{(x+θ − x̂(y(x,θ)))2} (9)

is minimized by y(x,θ) over all Lebesgue measurable func-

tions from R× R to R. This corresponds to a strategic

version of the information transmission scenario [7], where

the trajectory controller is the transmitter, the estimator is the

receiver, and the control input y is the transmitted message.

The transmitter and the receiver have different distortion

measures (9) and (8), respectively, rather than a common

goal, e.g., (8) solely, as in the conventional communication

models. Recently, in [12], [13], for the quadratic-Gaussian

case, the authors have shown that the Stackelberg equilibrium

can be achieved through a linear mapping of the source and

the private information, and the following theorem from [12]

provides the corresponding optimal policies.
Theorem 1. For the Stackelberg equilibrium in a strategic
environment, where [ x

θ ]∼N
([

0
0

]
,
[

σ2
x ρ

ρ σθ2

])
and the play-

ers have objectives (8) and (9), the optimal policy of the
leader is given by y(x,θ) = x+αθ , where

α =
−σ2

x +σx

√
σ2

x +4(σ2
θ +ρ)

2(σ2
θ +ρ)

(10)

and that of the follower is x̂(y) = σ2
x +αρ

σ2
x +σ2

θ+2αρ y.
We use Thm. 1 to formulate optimal linear policies for

the Stackelberg game (5) and (6). The following theorem

shows that there exists a linear policy for the control input

that achieves the equilibrium, i.e., optimal with respect to

(6), if the desired and the private states evolve in parallel.
Theorem 2. For a = b in (1), the optimal control policies
with respect to (6) are linear mappings of the current desired
state xk and the private state θk as y∗k = xk +αθk, where α
is time invariant and defined in (10).

Proof. Note that by (5), the best response of the tracking

system is given by

x̂k = argmin
x̂

E{(xk− x̂)2|y[1,k]}= E{xk|y[1,k]}.
Hence the trajectory controller aims to solve

min
yk(·,·)∈Γk,
∀k∈{1,··· ,n}

n

∑
k=1

E

{(
xk +θk−E{xk|y[1,k]}

)2
}
.
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Here, we consider the case where a = b. Assume that the

first control input is given by y1(x1,θ1) = x1 +αθ1, where

α is defined in (10). At the next stage, the controller aims

to solve the following myopic minimization problem:

min
y(·,·)∈Γ2

E
{
(x2 +θ2−E{x2|y1,y})2

}
, (11)

which lower bounded by the global minimum at k = 2 as

min
y′(·,·)∈Γx2 ,θ2

E
{
(x2 +θ2−E{x2|y′})2

}
, (12)

where Γx2,θ2
denotes the set of all Lebesgue measurable

mappings of x2 and θ2 to R, and (12) bounds (11) from below

since the previous control inputs restrict the performance

of the trajectory controller. Thm. 1 implies that y′(x2,θ2) =
x2 +αθ2 minimizes (12).

Next, consider E{x2|y1,y′}, which can be written as

E{x2|y1,y′}= E{x2−E{x2|y′}|y1,y′}+E{x2|y′}
= E{x2−E{x2|y′}|y1−E{y1|y′},y′}+E{x2|y′},

where y′ is uncorrelated with x2−E{x2|y′} and y1−E{y1|y′}.
Since they are all Gaussian, y′ ⊥⊥ x2 −E{x2|y′} and y′ ⊥⊥
y1−E{y1|y′}. Then, we obtain

E{x2|y1,y′}= E{x2−E{x2|y′}|y1−E{y1|y′}}+E{x2|y′}.
Note that we have

E{(x2−E{x2|y′})(y1−E{y1|y′})}
= E{(x2−E{x2|y′})y1}−E{(x2−E{x2|y′})E{y1|y′}},

where the second term on the right-hand-side is 0 since y′ ⊥⊥
x2−E{x2|y′}. Additionally, we have

E{(x2−E{x2|y′})y1}= E

{(
x2− σ2

x

σ2
x +α2σ2

θ
y′
)

y1

}
,

= E

{
aα2σ2

θ x1−aασ2
x θ1

σ2
x +α2σ2

θ
(x1 +αθ1)

}
= 0, (13)

where the parallel evolution of the states plays a signif-

icant role on the uncorrelatedness of x2 − E{x2|y′} and

y1. Hence, we have E{x2 − E{x2|y′}|y1 − E{y1|y′}} = 0.
Eventually we obtain E{x2|y1,y′}=E{x2|y′} and y(x2,θ2) =
x2 +αθ2 in (11) minimizes the lower bound (12). Hence,

y2(x2,θ2) = x2 + αθ2 is not only myopically optimal but

also globally optimal. Following identical steps, we can also

show that if y1, · · · ,ym−1 are globally optimal control inputs

then ym(xm,θm) = xm + αθm is also globally optimal. By

induction, we then conclude that ∀k∈ {1, · · · ,n}, yk(xk,θk) =
xk +αθk is the globally optimal control input.

Note that the minimum value of the finite horizon cost

(6) is bounded by the myopic minimum and the sum of the

global minima as
n

∑
k=1

min
yk(·,·)∈Γk

E{(xk +θk−E{xk|y[1,k]})2}

≥ min
yk(·,·)∈Γk,
∀k∈{1,··· ,n}

n

∑
k=1

E

{(
xk +θk−E{xk|y[1,k]}

)2
}

≥
n

∑
k=1

min
y′(·,·)∈Γxk ,θk

E{(xk +θk−E{xk|y′})2},

yet the myopic minimum achieves the sum of the global

minima and the corresponding optimal control input is yk =
xk +αθk. Then yk is also optimal with respect to (6) and the

proof is concluded. �
Remark 1. By Thm. 2, the optimal control policies are
yk+1(xk+1,θk+1) = xk+1 +αθk+1 = a(xk +αθk)+wk +αvk.
Particularly, at time k + 1, the estimate can be written as
E{xk+1|y[1,k+1]}= E{xk+1|x1 +αθ1,w1 +αv1, ...,wk +αvk}.
We note that since xk and θk are stationary processes, a = b
yields σ2

w = σ2
x

σ2
θ

σ2
v . Consequently, wk +αvk is obtained as

wk +αvk = arg min
w′(·,·)∈Γwk ,vk

E{(wk + vk−E{wk|w})2}.

This implies that for a = b, the construction of the optimal
controls can be considered as the strategic transmission of
independent and identically distributed desired and private
source sequences. Particularly, in a strategic environment
the whitening of the processes that are correlated in time
is possible if the desired and the private states evolve in
parallel.

IV. MYOPICALLY OPTIMAL CONTROL

Here, we consider the scenario where the trajectory con-

troller has a myopic objective (7) and show that the optimal

control input policies provided later in Thm. 3 are linear

functions of the current states. Thm. 1 yields that at k = 1

the myopically optimal control input is a linear function

of the desired state x1 and the private state θ1. At k = 2,

since all the parameters in (7) are jointly Gaussian due to

y1 = x1 + αθ1, the myopic objective, which is minimized

with respect to y2(·, ·), is E{(x2 + θ2 − E{x2|y1,y2})2} =
E{(x̃2 + θ2−E{x̃2|ỹ2}})2}, where x̃2 = x2−E{x2|y1} and

ỹ2 = y2−E{y2|E{x2|y1}}. Note that x̃2 ⊥⊥E{x2|y1} and ỹ2 ⊥⊥
E{x2|y1}, yet θ2 and E{x2|y1} are not independent. How-

ever, we can write E{(x2 + θ2−E{x2|y1,y2})2} = E{(x̃2 +
θ̃2−E{x̃2|ỹ2})2}+E{(E{θ2|E{x2|y1}})2}, where θ̃2 = θ2−
E{θ2|E{x2|y1}} and the second term on the right-hand-side

does not depend on the minimization argument y2(·, ·). Then

the minimization objective can be written as

min
y2(·,·)∈Γ2

E{(x̃2 + θ̃2−E{x̃2|y2})2} (14)

subject to y2 ⊥⊥ E{x2|y1}, and the following theorem shows

that the policy space Γ2 can be narrowed.

Blackwell’s Irrelevant Information Theorem [18]–[20].

Consider standard Borel spaces [21] X, Y, and U such
that there is a probability measure P on X×Y, and let
c : X×U→R be a bounded Borel-measurable cost function.
Then, for any Borel measurable function γ : X×Y → U,
i.e., any policy based on both x ∈ X and y ∈ Y, there exists
another Borel measurable function γ◦ : X→U, i.e., a policy
depending on x only, such that∫

X

c(x,γ◦(x))P(dx)≤
∫
X×Y

c(x,γ(x,y))P(dx,dy).
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We invoke Blackwell’s Theorem in the following:

min
y2(·,·)∈Γ2

E{(x̃2 + θ̃2−E{x̃2|y2})2} (15)

≥ min
y2(·,·)∈Γx̃2 ,θ̃2

E{(x̃2 + θ̃2−E{x̃2|y2})2}, (16)

where Γx̃2,θ̃2
denotes the set of all Lebesgue measurable

mappings of x̃2 and θ̃2 since the bounded Borel measurable

cost function E{(x̃2 + θ̃2−E{x̃2|y2})2} in (15) depends on

only x̃2, θ̃2 and the policy y2. Note that since the inde-

pendence constraint restricts the policy space for y2(·, ·),
(16) bounds (14) from below and ỹ(·, ·) ∈ Γx̃2,θ̃2

already

implies independence from E{x2|y1} since x̃2 ⊥⊥ E{x2|y1}
and θ̃2 ⊥⊥E{x2|y1}. Hence, the myopic objective at k = 2 can

be written as (16) and Thm. 1 says that the corresponding

optimal control input is also a linear function and given by

y2(x̃2, θ̃2) = x̃2 +α2θ̃2, where

α2 =
−σ̃2

x,2 + σ̃x,2

√
σ̃2

x,2 +4(σ̃2
θ ,2 + ρ̃2)

2(σ̃2
θ ,2 + ρ̃2)

, (17)

σ̃2
x,2 = E{x̃2

2}, σ̃2
θ ,2 = E{θ̃ 2

2 }, ρ̃2 = E{x̃2θ̃2}.
Suppose that until k = m−1, the optimal control inputs in

terms of the myopic objective (7) are all linear-in-parameters.

This yields that y[1,m−1] are jointly Gaussian with the current

states xm and θm. Then, we obtain

E{(xm +θm−E{xm|y[1,m]})2}= E{(x̃m +θm−E{x̃m|ỹm})2},
where x̃m = xm − E{xm|y[1,m−1]} and ỹm = ym −
E{ym|E{xm|y[1,m−1]}}. Since x̃m − E{x̃m|ỹm} is

uncorrelated with E{xm|y1, · · · ,ym−1}, we have

x̃m − E{x̃m|ỹm} ⊥⊥ E{θm|E{xm|y[1,m−1]}} and the myopic

objective can be written as

min
y(·,·)∈Γx̃m ,θ̃m

E{(x̃m + θ̃m−E{x̃m|ỹ})2},

where θ̃m = θm−E{θm|E{xm|y[1,m−1]}}. Hence the optimal

control at k = m is also linear-in-parameters x̃m and θ̃m. By

induction, we conclude that the optimal control inputs with

respect to the myopic objective are all linear and given by

yk(x̃k, θ̃k) = x̃k +αkθ̃k for certain αk, k = 1, · · · ,n. However,

yk = xk + αkθk can also achieve the myopic objective (7)

since E{xk|y[1,k−1], x̃k +αkθ̃k}= E{xk|y[1,k−1],xk +αkθk}.
Next, we formulate a recursive technique to calculate αk.

To this end, by (17), σ̃2
x,k, σ̃2

θ ,k and ρ̃k should be calculated

and they are given by

σ̃2
x,k = σ2

x −
(E{xkx̄k})2

E{x̄2
k}

, σ̃2
θ ,k = σ2

θ −
(E{θkx̄k})2

E{x̄2
k}

, (18)

ρ̃k =−E{θkx̄k}E{xkx̄k}
E{x̄2

k}
, (19)

for k > 1, where x̄k = E{xk|y[1,k−1]}. We let

Σk = E

{[
xk−x̄k
θk−θ̄k

][
xk−x̄k
θk−θ̄k

]T
}
,

where θ̄k = E{θk|y[1,k−1]} and Σk can be calculated recur-

sively as

Σk = MΣk−1M− MΣk−1ᾱk−1ᾱT
k−1Σk−1M

ᾱT
k−1Σk−1ᾱk−1

+Λ (20)

for k > 1 with Σ1 =
[

σ2
x 0

0 σ2
θ

]
, where M =

[
a 0
0 b

]
, Λ=

[
σ2

w 0

0 σ2
v

]
,

and ᾱk = [1 αk ]
T . Note that (18) and (19) include E{xkx̄k}

and E{θkx̄k}. After some algebra, E{xkx̄k} and E{θkx̄k}
can be calculated recursively as in (22) for k = 2, · · · ,n,

where μk

= [E{xkx̄k},E{xkθ̄k},E{θkx̄k},E{θkθ̄k}]T , μ1 =

[0,0,0,0]T , and[
ρx,k
ρθ ,k

]
=

1

ᾱT
k−1Σk−1ᾱk−1

MΣk−1ᾱk−1.

Additionally, E{x̄2
k} can be calculated through E{(xk −

x̄k)
2} = σ2

x − 2E{xkx̄k}+E{x̄2
k} and E{(xk − x̄k)

2} is cal-

culated in Σk, i.e., the top left element of Σk.

On the other side, the tracking system can calculate the

output, i.e., x̂k = E{xk|y[1,k]}, recursively through

[
x̂k
θ̂k

]
=

(
I− Σ̄k−1ᾱkᾱT

k

ᾱT
k Σ̄k−1ᾱk

)
M

[
x̂k−1

θ̂k−1

]
+

Σ̄k−1ᾱk

ᾱT
k Σ̄k−1ᾱk

yk (22)

and

Σ̄k = MΣ̄k−1M− MΣ̄k−1ᾱkᾱT
k Σ̄k−1M

ᾱT
k Σ̄k−1ᾱk

+Λ, (23)

for k = 1, · · · ,n, where [ x̂0 θ̂0 ] = [0 0 ] and Σ̄0 =
[

σ2
x 0

0 σ2
θ

]
. The

following theorem captures these results.

Theorem 3. The optimal control policies with respect to
the myopic objective (7) are linear mappings of the current
desired state xk and the private state θk as yk = xk +αkθk,

where αk =
−σ̃2

x,k+σ̃x,k

√
σ̃2

x,k+4(σ̃2
θ ,k+ρ̃k)

2(σ̃2
θ ,k+ρ̃k)

and σ̃2
x,k, σ̃2

θ ,k, and

ρ̃k can be calculated recursively through (18)-(22). Fur-
thermore, the optimal policies for the tracking output are
linear functions of the accessed control inputs and can be
calculated recursively through (22) and (23).

We note that in [15], the authors study a similar problem

with the trajectory controller having a myopic objective.

Different from our objective here, however, they consider the

more general multi-dimensional case, but under an a priori

linearity restriction on the receiver (the tracking system in

our setting). They show that under such a restriction, there

exists a linear policy that achieves the equilibrium. Here,

μk =

⎡
⎣ a2−aρx,k −aρx,kαk−1 0 0

−aρθ ,k ab−aρθ ,kαk−1 0 0

0 0 ab−bρx,k −bρx,kαk−1

0 0 −bρθ ,k b2−bρθ ,kαk−1

⎤
⎦μk−1 +

⎡
⎣ aρx,k 0

aρθ ,k 0

0 bρx,kαk−1

0 bρθ ,kαk−1

⎤
⎦[

σ2
x

σ2
θ

]
, (22)
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however, we show that for the case of scalar states, linear

strategies are optimal within the general class.
In the next section, we study the linear strategies that

minimize (6).

V. OPTIMAL LINEAR CONTROL

To recapitulate, what we have shown above is that if the

trajectory controller has a myopic objective as in (7), then

the optimal control policies are linear functions of the current

states, i.e., xk and θk. Correspondingly, in order to formulate

policies for the finite horizon cost function (6), we restrict

the policy space for the control inputs to the set of all linear

mappings of the current states, i.e., the control input yk is

constructed as2 yk = xk+αkθk, where αk ∈R for k = 1, · · · ,n
are certain weights. We denote this function by yk(xk,θk) and

the set of all such linear mappings by ϒk, i.e., yk(·, ·) ∈ ϒk.

More precisely, here the objective of the trajectory controller

is given by

min
yk(·,·)∈ϒk,
∀k∈{1,...,n}

n

∑
k=1

E

{(
xk +θk−E{xk|y[1,k−1],yk})

)2
}
. (24)

Let ck be the incurred cost at instant k such that ck

=

E{(xk +θk−E{xk|y[1,k]})}. As derived in the Section IV, ck
can be written as

ck = E{(x̃k + θ̃k−E{x̃k|ỹk})2}+E{(E{θk|x̄k})2}. (25)

After some algebra, we obtain

E{(x̃k+θ̃k−E{x̃k|ỹk})2}= σ̃2
x,k +2ρ̃k + σ̃2

θ ,k

− (σ̃2
x,k +αkρ̃k)(σ̃2

x,k +(αk +2)ρ̃k +2αkσ̃2
θ ,k)

σ̃2
x,k +2αkρ̃k +α2

k σ̃2
θ ,k

and the second term on the right hand side of (25) is given

by (using (18)):

E{(E{θk|x̄k})2}= E

{(
E{θkx̄k}
E{x̄2

k}
x̄k

)2
}

= σ2
θ − σ̃2

θ ,k.

In particular, ck depends on σ̃2
k , ρ̃k, σ̃2

θ ,k, and

αk only. Then, we introduce a state vector zk =[
σ2

x,k ρk σ2
θ ,k E{xkx̄k} E{xkθ̄k} E{θkx̄k} E{θkθ̄k}

]T
such that

by (20) and (22), there is a nonlinear recursive relation

between zk and zk−1 as zk = f (zk−1,αk−1). Additionally,

by (18) and (19), ck depends on zk and αk in a time-

invariant way and we denote the corresponding relation as

ck = c(zk,αk). Hence, we can convert problem (24) to a

finite-horizon discrete time optimal control problem:

min
αk∈R,

∀k∈{1,...,n}

n

∑
k=1

c(zk,αk) subject to zk+1 = f (zk,αk).

Then we can impose necessary conditions on the optimal

control inputs through the Minimum Principle as in [22], [23]

or approach the problem numerically as a nonlinear program.
Next, we analyze the strategic control of a tracking system

through numerical examples.

2Note that having no weight assigned to xk does not lead to any loss of
generality, since yk can always be scaled.
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Fig. 2: Myopic cost for the trajectory controller when states

evolve in parallel, i.e., a = b.
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Fig. 3: Myopic cost for the trajectory controller when the

private state is a more colored process, i.e., relatively more

correlated in time.

VI. NUMERICAL EXAMPLES

In this section we provide some numerical examples which

serve to illustrate the results of the previous sections. To this

end, we set the initial states x1 and θ1 as standard normal

random variables, i.e., σ2
x = σ2

θ = 1, and first consider the

case when the states evolve in parallel, i.e., a = b, and the

trajectory controller employs myopic policies, i.e., aims to

minimize (7). Thm. 2 shows that if a= b, the myopic policies

are linear functions of the current states and they can achieve

the global minimum. In Fig. 2, we plot both theoretical and

ensemble averaged (over 105 independent trials) incurred

cost of the trajectory controller, i.e., ck =E{(xk +θk− x̂k)
2},

when the desired and the private states evolve in parallel, e.g.,

a = b = 0.4. Note that at k = 1, the trajectory controller aims

to minimize E{(x1 + θ1−E{x1|y1})2} through y1 over all

Lebesgue measurable functions. In particular, the controller

aims to achieve the global minimum at k = 1. As seen in Fig.

2, the controller also obtains the same minimum incurred cost

for k > 1, which yields that the myopic policies also achieve

the global minimum as expected.
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Fig. 4: Myopic cost for the trajectory controller when the

desired state is a more colored process.

Next, we examine the scenarios when the states evolve

differently. The Fig. 3 plots the incurred cost of the trajectory

controller for myopic policies, i.e., yk = xk +αkθk, when the

private state θk is more colored, i.e., the process is more

correlated in time, since b = 0.6 > a = 0.4. In this case,

while the myopic objective y1 achieves the global minimum

at k = 1, the incurred cost increases at k > 1 and then reaches

a steady-state value. We observe that αk increases after k = 1

and takes values around a limit point, e.g., 0.64. In Fig. 4,

we analyze the case when the desired state is a relatively

more colorful process, i.e., a = 0.6 and b = 0.4. In that case,

different from the Fig. 3, we see that αk decreases in time.

Particularly, in the myopic policies, weight of the relatively

colorful state processes increases in time and in both cases,

weights reach a steady-state value.

Finally, we study the optimal linear control for the objec-

tive (24). In the same framework with the previous examples,

we have n = 10, a = 0.6, and b = 0.4. We restrict the

policy space of the trajectory controller such that αk ∈
{0.58,0.59,0.6,0.61,0.62}. We have chosen these values

since in Fig. 4, we observe that in the class of myopic

policies for the same setup, αk ∈ [0.58,0.62]. Similar to the

myopic policies, we obtain that the non-increasing weight

sequence {0.62,0.61, ...,0.61,0.59} achieves the equilibrium

with respect to (24). We point out that the corresponding cost

is 3.887 which is slightly less than the cost achieved by the

myopic policies, i.e., 3.891. This also implies that the myopic

policies are not optimal with respect to the finite horizon cost

(6) in general.

VII. CONCLUSION

In this paper, we have addressed the strategic control of a

tracking system in the context of dynamic Stackelberg equi-

librium. With finite horizon objectives, we have shown that a

linear function of the current states can lead to a Stackelberg

equilibrium if the states evolve in parallel. Furthermore, if

the trajectory controller has a myopic objective, there also

exists a linear function of the current states that leads to

equilibrium in the general case. Finally, we have shown

that restricting the policy space of the trajectory controller

to the set of all linear mappings of the current states, the

stochastic dynamic game problem with finite horizon cost

can be viewed as a discrete time optimal control problem.

Some future directions of research on this topic include the

analysis of the policies when there is a channel between the

trajectory controller and the tracking system, and the strategic

control of a control system, extending [1] to the strategic

setting.
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