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Abstract— We introduce a new defense mechanism for
stochastic control systems with control objectives, to enhance
their resilience before the detection of any attacks. To this end,
we cautiously design the outputs of the sensors that monitor
the state of the system since the attackers need the sensor
outputs for their malicious objectives in stochastic control
scenarios. Different from the defense mechanisms that seek to
detect infiltration or to improve detectability of the attacks, the
proposed approach seeks to minimize the damage of possible
attacks before they actually have even been detected. We,
specifically, consider a controlled Gauss-Markov process, where
the controller could have been infiltrated into at any time
within the system’s operation. Within the framework of game-
theoretic hierarchical equilibrium, we provide a semi-definite
programming based algorithm to compute the optimal linear
secure sensor outputs that enhance the resiliency of control
systems prior to attack detection.

I. INTRODUCTION

Incorporating cyber, i.e., Internet connected, components
into control systems, cyber-physical systems, e.g., process
control systems and smart grid, are vulnerable against cy-
ber attacks [1], [2]. Robust control approaches [3] against
random external disturbances may not address such attacks
since those attacks are target-specific with certain long
term objectives. Intrusion detection systems seek to detect
misbehaviors in the system to take appropriate counter
actions in order to reduce the damage due to such attacks
as early as possible [4]. However, advanced and persistent
attackers can also seek to deceive the detection mechanisms
by manipulating monitoring signals, by attacking stealthily,
or by also compromising the detection mechanisms [5].
As an example, [6] analyzes false data injection attacks,
where attackers can inject data to the sensor outputs and can
avoid detection mechanism strategically while degrading the
estimation operations of cyber-physical systems.

In this paper, we specifically analyze the attacks with
certain adversarial control objectives in linear-quadratic-
Gaussian (LQG) systems. Prior literature [7]–[9] has formu-
lated such optimal stealthy control attacks. In [7], [8], the
authors have formulated the optimal attacks that can remain
undetected while driving the state of the system according to
his/her adversarial goal by manipulating both sensor outputs
and control inputs together. Recently, [9] has formulated the
optimal attack strategies that can maximize the quadratic
cost of a system by keeping the Kullback-Leibler distance
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[10] between the realized and the desired state behaviors
at minimum to avoid detection and showed that injecting
independent Gaussian noise with certain variance into the
control input is the optimal attack. Different from [7]–
[9], another recent study [11] has proposed linear encoding
schemes for sensor outputs of an LQG system in order to
enhance detectability of false data injection attacks. However,
the coding matrix is assumed to be unknown by the attackers
and the authors have proposed to mitigate such issues via
time-varying coding matrices. In spite of these extensive
studies, we still have significant and yet unexplored problems
about how to enhance security against undetected attacks,
i.e., to reduce damage due to attacks before detection.

For resiliency of control systems prior to attack detection,
we seek to design the sensor outputs a-priori such that when
the controller of the system is compromised by an attacker,
the damage is minimized. We restrict the sensor strategies to
linear functions, which leads to an LQG control problem.
Otherwise, the problem entails non-classical information
model and for general sensor outputs, the corresponding
optimal control strategies could not be unique and could
not even be expressed in closed form [12]. Before the
detection, the controller of the system could have already
been compromised and disregarding such a possibility and
disclosing state information to the controller as if he/she has
not been compromised could benefit the attacker in his/her
malicious objective. We note that due to the stochastic nature
of the problem, i.e., due to state noise, the attacker needs
the sensor outputs to drive the system in his/her desired path
effectively [12].

Furthermore, similar to the compromise of the controller,
sensors of the system could also be compromised, which
can cancel the effort to disclose state information cautiously
with a shortcut to the state. To mitigate such issues, we
consider the scenarios where the sensors do not have access
to the actual state realizations and they are not controlled
externally. Particularly, all the sensor output strategies are
selected and fixed a-priori. Correspondingly, the attacker by
infiltrating into the system could be aware of those strategies.
Even though the attacker might be aware of the selected
sensor output strategies, we seek to select them such that the
damage before the detection is minimized. To this end, we
consider a hierarchical game framework, where the sensors
are the leader of the game, by announcing their strategies
beforehand, and the controller, which might be adversarial
or not, is the follower of the game. The sensors should
anticipate the reaction of the controller, based on certain
belief about the controller’s type, e.g., malicious or not, and
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the change of type during the operation.
We have introduced secure sensor design framework in

[13], but have not completely solved the problem. We have
considered the controller could only be compromised at the
beginning of the operation. In [5], we have extended [13]
for the scenarios where the controller could be compro-
mised during the operation. Here, we also consider that
the controller can be compromised during the operation,
however, different from [5], we consider the situation where
the controller can have access to the previous control inputs.
For the system, this new model removes the uncertainty
about how the state has been driven by an attacker before
the detection. Correspondingly, for an attacker, this new
model removes the uncertainty before the infiltration since
an attacker could also infiltrate into a system, which has
already been compromised by another attacker. Furthermore,
recording the control inputs at the controller can also play a
role for the forensic analysis of the attack in order to identify
the attacker objective after detection.

The paper is organized as follows: In Section II, we
describe the secure sensor design problem. In Section III,
we characterize the optimal controller response strategies for
given sensor strategies and for any type. We compute the
optimal secure sensor strategies in Section IV. We conclude
the paper in Section V with several remarks and possible
research directions.
Notations: For an ordered set of parameters, e.g., x1, · · · ,xn,
we define x[k,l] := xk, · · · ,xl , where 1≤ k≤ l ≤ n. N(0, .) de-
notes the multivariate Gaussian distribution with zero mean
and designated covariance. We denote random variables by
bold lower case letters, e.g., xxx. For a random variable xxx, x̂̂x̂x is
another random variable corresponding to its posterior belief
conditioned on certain other random variables that will be
apparent from the context. For a vector x and a matrix A, x′

and A′ denote their transposes, and ‖x‖ denotes the Euclidean
(L2) norm of the vector x. For a matrix A, tr{A} denotes
its trace. We denote the identity and zero matrices with the
associated dimensions by I and O, respectively, while 1 (or 0)
denotes a vector whose entries are all 1 (or 0). For positive
semi-definite matrices A and B, A � B means that A− B
is also a positive semi-definite matrix. A⊗ B denotes the
Kronecker product of the matrices A and B.

II. PROBLEM FORMULATION

Consider a controlled stochastic system described by the
following equations:

xxxk+1 = Axxxk +Buuuk +vvvk, (1)

for k = 1,2, . . . ,n, where1 A ∈ Rm×m, B ∈ Rm×r, and xxxk ∼
N(0,Σk), k = 1, . . . ,n. The additive state noise sequence {vvvk}
is white Gaussian vector process, i.e., vvvk ∼ N(0,Σv); and is
independent of the initial state xxx1. We assume that the matrix

1Even though we consider time invariant matrices A and B for notational
simplicity, the provided results could be extended to time-variant cases rather
routinely. Furthermore, we consider all the random parameters to have zero
mean; however, the derivations can be extended to non-zero mean case in
a straight-forward way.
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Fig. 1: Cyber physical system including a sensor and a
controller.

A is non-singular, and the auto-covariance matrices Σ1 and Σv
are positive definite. The closed loop control vector uuuk ∈Rr

is given by
uuuk = γk(sss[1,k],uuu[1,k−1]), (2)

where γk(·) can be any Borel measurable function from
Rmk+r(k−1) to Rr. The sensor output sssk ∈ Rm is given by

sssk = ηk(xxxk), (3)

where ηk(·) can be any linear function from Rm to Rm.
We have two separate agents: Sensor (S) and Controller

(C), as seen in Fig. 1. At each stage k = 1, . . . ,n, the agents
construct sssk and uuuk according to their own objectives. In
particular, S chooses ηk from the strategy space ϒ, which,
for each k, is the set of all linear functions from Rm to Rm,
i.e., ηk ∈ϒ and sssk =ηk(xxxk). This implies that for each ηk ∈ϒ,
there exists a matrix Lk ∈ Rm×m such that

sssk = L ′
kxxxk, (4)

almost surely on Rm. C chooses γk from the strategy space
Γk, which is the set of all Borel measurable functions from
Rmk+r(k−1) to Rr, i.e., γk ∈ Γk and uuuk = γk(sss[1,k]).

While S has a single type denoted by F, C can have one
of Θ := {F,A1, . . . ,At}, which can also change in time. Fur-
thermore, S does not know C’s exact type. Particularly, the
types {A1, . . . ,At} correspond to those attackers that seek to
infiltrate into C. Once an attacker achieves to infiltrate, he/she
becomes in charge of C and can construct uuuk’s accordingly
while S is unaware of the infiltration. Furthermore, within
time, infiltration attacks can succeed or fail, and defense
mechanisms can detect the attacks or not, which implies that
the type of C can change dynamically. To model the type
changes explicitly, we can consider a jump process {θθθ j ∈Θ}
and we consider the scenarios where the type changes can
occur at certain instances, e.g., Λ⊂ {1, . . . ,n}.

Having a single time-invariant type F, S has a single cost
function:

JF(η[1,n];γ[1,n]) = E

{
n

∑
k=1
‖xxxk+1‖2

QF
+‖uuuk‖2

RF

}
, (5)

where2 QF ∈ Rm×m is positive semi-definite and RF ∈ Rr×r

is positive definite. However, based on his/her type and the

2For notational simplicity, we consider time-invariant QF and RF. How-
ever, the provided results could be extended to time-variant cases rather
routinely.
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time the type has changed, C can have different objectives.
In particular, if C has type F and the type has changed at
k = κ , C’s cost function is given by

JF(η[1,n]; ·,γF,[κ,n]) = E

{
n

∑
k=κ

‖xxxF,k+1‖2
QF

+‖uuuF,k‖2
RF

}
; (6)

where ‘·’ as an argument of the cost function refers to
C’s strategies γ1, . . . ,γκ−1, which are selected by C before
C has become type F, and the subscript F in the state
xxxF,k, the strategy γF,k, and the control input uuuF,k show their
dependence on C’s type explicitly. Furthermore, if C has one
of the types {A1, . . . ,At}, i.e., if an attacker is in charge of
C, C’s cost function is given by

JAi(η[1,n]; ·,γAi,[κ,n]) = E

{
n

∑
k=κ

‖xxxAi,k+1− zi‖2
QAi

+‖uuuAi,k−uuuF,k‖2
RAi

}
, (7)

where QAi ∈ Rm×m is positive semi-definite and RAi ∈ Rr×r

is positive definite. We note that xxxAi,k denotes the state driven
by the adversarial control input uuuAi,k while uuuF,k denotes the
control input that would have been used if C would have
type F so that, by being close to the desired control input,
the attacker Ai can avoid intrusion detection mechanisms
[13].

The agents S and C aim to minimize their cost functions
by choosing the strategies η[1,n] and γ[1,n] while each strategy
implicitly depends on the other. Due to the hierarchy, C’s
strategies γθ ,k ∈Γk, θ ∈{F,A1, . . . ,At}, depending on his/her
type, can also depend on S’s strategies η[1,k] and the time of
type change. In order to show these dependences explicitly,
henceforth, we denote C’s strategies by γ

(κ)
θ ,k (η[1,k]), which

implies γ
(κ)
θ ,k (η[1,k])(sss[1,k]) := γθ ,k(sss[1,k]). Then, the pair of

strategies: [
η
∗
[1,n];

(
γ
(κ)∗
θ ,[κ,n],θ ∈Θ,κ ∈ h̄

)]
(8)

attains the Stackelberg equilibrium provided that

η
∗
[1,n] = argmin

ηk∈ϒ,
k=1,...,n

E

{
∑

κ,κ+∈Λ

κ+−1

∑
k=κ

‖xxxθθθ j ,k+1‖2
QF

+‖uuuθθθ j ,k‖
2
RF

}

(9a)

γ
(κ)∗
θ ,[κ,n](η[1,n]) = argmin

γ
(κ)
θ ,k∈Γk,

k=κ,...,n

Jθ ,κ

(
η[1,n]; ·,γ

(κ)
θ ,[κ,n](η[1,n])

)
, (9b)

where the expectation is also taken over {θθθ j}, κ+ is the
type change time after κ in Λ, and θθθ j refers to the type
of C when k ∈ [κ,κ+). We note that the optimization in
(9b) results in an equivalence class of strategies such that
all optimizing strategies lead to the same control input uuuθθθ ,k
almost everywhere on Rr [5].

III. OPTIMAL C STRATEGIES FOR ANY TYPE
For given linear S strategies, optimal C strategies can be

computed as in [5], however, here, C can also have access to
the previous control inputs. Since C can have access to the
previous control inputs, C does not need to know what C’s
type was. Correspondingly, we can relax the assumption that
attackers consider C’s type was F before the type change, i.e.,
before the infiltration.

Based on3 [5], when C has type F, the optimal control
inputs uuuF,[κ,n] are given by uuu∗F,n...

uuu∗F,κ

=−
(

Φ
(κ)
F

)−1
(

K(κ)
F

[
x̂̂x̂xo

n...
x̂̂x̂xo

κ

]
+Φ

(κ)
F

[uuuκ−1...
uuu1

])
, (10)

where x̂̂x̂xo
k = E{xxxo

k |sss[1,k]}, the control-free state xxxo
k evolves

according to
xxxo

k+1 = Axxxo
k +vvvk, (11)

and the matrices Φ
(κ)
F ∈ R(n−κ+1)r×(n−κ+1)r, K(κ)

F ∈
R(n−κ+1)r×(n−κ+1)m, Φ

(κ)
F ∈R(n−κ+1)r×(κ−1)r are defined by

Φ
(κ)
F :=

 I KF,nB ··· KF,nAn−κ−1B
I ··· KF,n−1An−κ−2B

. . .
...
I

 , K(κ)
F :=

[KF,n
. . .

KF,κ

]
,

Φ
(κ)
F :=


KF,nAn−κ B ··· KF,nAn−2B

KF,n−1An−κ−1B ··· KF,n−1An−3B
...

...
KF,κ B ··· KF,κ Aκ−2B

 (12)

while

∆F,k := B′Q̌F,k+1B+RF, KF,k := ∆
−1
F,kB′Q̌F,k+1A, (13)

Q̌F,k = QF +A′(Q̌F,k+1− Q̌F,k+1B∆
−1
F,kB′Q̌F,k+1)A,

Q̌F,n+1 = QF. (14)

Furthermore, when C has type Ai, we let

Āk :=
[

A Om×(n−k)r B Om×((k−1)r+m)

O(m+nr)×m Im+nr

]
,

B̄ :=
[

B
O(m+nr)×r

]
, Q̄Ai := [ Im Om×nr −Im ]QAi

[
Im

Onr×m
−Im

]
,

and we introduce x̄̄x̄xo
Ai,k

, evolving according to4 x̌̌x̌xk+1
uuuF
zi


︸ ︷︷ ︸

=: x̄̄x̄xo
k+1

= Āk

 x̌̌x̌xk
uuuF
zi

+[ Im
O(nr+m)×m

]
vvvk,

where x̌̌x̌xk is the state that would have been realized if C only
has type F. Then, the optimal control input is given by uuu∗Ai ,n...

uuu∗Ai ,κ

=

 uuu∗F,n...
uuu∗F,κ

−(Φ
(κ)
Ai

)−1
(

K(κ)
Ai

 E{ x̄̄x̄xo
Ai ,n
|sss[1,n]}

...
E{ x̄̄x̄xo

Ai ,κ
|sss[1,κ]}


+Φ

(κ)
Ai

uuuκ−1−uuu∗F,κ−1...
uuu1−uuu∗F,1

), (15)

3Detailed derivations could be found in [5].
4 x̄̄x̄xo

Ai ,k
depends on type Ai due to zi.
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where the matrices Φ
(κ)
Ai
∈ R(n−κ+1)r×(n−κ+1)r, K(κ)

Ai
∈

R(n−κ+1)r×(n−κ+1)m, Φ
(κ)
Ai
∈R(n−κ+1)r×(κ−1)r are defined by

Φ
(κ)
Ai

:=

 I KAi ,nB̄ ··· KAi ,nĀn−1...Āκ+1B̄
I ··· KAi ,n−1Ān−2...Āκ+1B̄

. . .
...
I

 , (16)

Φ
(κ)
Ai

:=


KAi ,nĀn−1...Āκ B̄ ··· KAi ,nĀn−1...Ā2B̄

KAi ,n−1Ān−2...Āκ B̄ ··· KAi ,n−1Ān−2...Ā2B̄
...

...
KAi ,κ B̄ ··· KAi ,κ Āκ−1...Ā2B̄

 ,
K(κ)

Ai
:=

[KAi ,n . . .
KAi ,κ

]
,

while

∆Ai,k := B̄′Q̌Ai,k+1B̄+RAi , KAi,k := ∆
−1
Ai,k

B̄′Q̌Ai,k+1Āk, (17)

Q̌Ai,k = Q̄Ai + Ā′k(Q̌Ai,k+1− Q̌Ai,k+1B̄∆
−1
Ai,k

B̄′Q̌Ai,k+1)Āk,

Q̌Ai,n+1 = Q̄Ai .

In (15), the conditional expectation E{ x̄̄x̄xo
Ai,k
|sss[1,k]} is given

by

E{ x̄̄x̄xo
Ai,k|sss[1,k]}=

[
Ek−ΨkΦ

−1
F KFLk

−Φ
−1
F KFLk
Om

]
︸ ︷︷ ︸

=: Fk

[
x̂̂x̂xo

n...
x̂̂x̂xo

1

]
︸ ︷︷ ︸
=: x̂̂x̂xo

+

[
Om×1
Onr×1

zi

]
︸ ︷︷ ︸

=: zi

, (18)

where Ek := [Om×(n−k)m Im Om×(k−1)m ] is the indicator matrix
such that E{xxxo

k |sss[1,k]}= Ek x̂̂x̂xo, k = 1, . . . ,n, and

Ψk :=
[
Om×(n−k+1)m B AB · · · Ak−2B

]
,

Lk :=


O

An−k

...
A
Im

O

O O I(k−1)m

 .
Then, the optimal control inputs uuuAi,[κ,n] are given by uuu∗Ai,n...

uuu∗Ai ,κ

=

 uuu∗F,n...
uuu∗F,κ

−(Φ
(κ)
Ai

)−1
(

K(κ)
Ai

(F(κ) x̂̂x̂xo +1n−κ+1⊗ zi)

+Φ
(κ)
Ai

uuuκ−1−uuu∗F,κ−1...
uuu1−uuu∗F,1

), (19)

where F(κ) := [F ′n ··· F ′κ ]
′.

In the next section, we seek to compute optimal S strate-
gies based on (10) and (19).

IV. OPTIMAL S STRATEGIES

Note that the optimal control varies according to the C’s
type and the time of type change. Therefore, we first seek to
write the optimal control in a unified compact form. To this
end, let

uuu(κ)∗
θθθ

:=

 uuu∗
θθθ ,n...

uuu∗
θθθ ,κ

 and ū̄ūu(κ) :=

[uuu
κ−1...
uuu1

]
. (20)

Then, by (10), uuu(κ)F can be written as

uuu(κ)∗F = −

=:T (κ)
F︷ ︸︸ ︷(

(Φ
(κ)
F )−1K(κ)

F [ I(n−κ+1)m O(n−κ+1)m×(κ−1)m ]
)

x̂̂x̂xo

−
(
(Φ

(κ)
F )−1

Φ
(κ)
F

)
︸ ︷︷ ︸

=:T (κ)
F

ū̄ūu(κ). (21)

Correspondingly, by (19), uuu(κ)Ai
can be written as

uuu(κ)∗Ai
= − (Φ

(κ)
Ai

)−1K(κ)
Ai

F(κ) x̂̂x̂xo− (Φ
(κ)
Ai

)−1K(κ)
Ai

1n−κ+1⊗ zi

− (Φ
(κ)
Ai

)−1
Φ

(κ)
Ai

bu(κ)+
[

In−κ+1 (Φ
(κ)
Ai

)−1Φ
(κ)
Ai

]
uuu(1)∗F ,

and by (21), we obtain

uuu(κ)∗Ai
=−

=:T (κ)
Ai︷ ︸︸ ︷(

(Φ
(κ)
Ai

)−1
Φ

(κ)
Ai

)
ū̄ūu(κ)−

=:Z(κ)
Ai︷ ︸︸ ︷

(Φ
(κ)
Ai

)−1K(κ)
Ai

1⊗ zi

−
(
(Φ

(κ)
Ai

)−1K(κ)
Ai

F(κ)+
[

I (Φ
(κ)
Ai

)−1Φ
(κ)
Ai

]
(Φ

(1)
F )−1K(1)

F

)
︸ ︷︷ ︸

=:T (κ)
Ai

x̂̂x̂xo.

Let Z(κ)
F = 0 be a zero vector; then for θ ∈ Θ, we obtain a

compact form representation for the optimal control:

uuu(κ)
θ

=−T (κ)
θ

x̂̂x̂xo−T (κ)
θ

ū̄ūu(κ)−Z(κ)
θ

. (22)

Note also that in (9a), only uuu(κ)∗
θθθ j ,k

for k = κ, . . . ,κ+−1 are
included. Let N := |Λ|; then, by (22), for a given realization
of the process {θθθ j}, e.g., θ[1,N], we have

=:uuu∗
θ[1,N]︷ ︸︸ ︷

MκNuuu(κN)∗
θκN

...
Mκuuu(κ)∗

θκ

...
M1uuu(1)∗

θ1


=−

=:Tθ[1,N]︷ ︸︸ ︷

O MκN T (κN)
θκN

...
. . .

O · · · O Mκ T (κ)
θκ

...
...

. . .
O · · · O · · · O


uuu∗θ[1,N]

−



MκN T (κN)
θκN

...
Mκ T (κ)

θκ

...
M1T (1)

θ1


︸ ︷︷ ︸

=:Mθ[1,N]

x̂̂x̂xo−



MκN Z(κN)
θκN

...
Mκ Z(κ)

θκ

...
M1Z(1)

θ1


︸ ︷︷ ︸

=:Zθ[1,N]

, (23)

where Mκ ∈ R(κ+−κ)r×(n−κ+1)r is given by

Mκ := [O(κ+−κ)r×(n−κ++1)r I(κ+−κ)r ]

and κN is the last state transition time. Note that in (23),
Tθ[1,N]

is an upper triangular matrix, whose diagonal entries
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are zero, which implies that I +Tθ[1,N]
is an invertible upper

triangular matrix. Therefore, by (23), we obtain

uuu∗θ[1,N]
=−(I +Tθ[1,N]

)−1(Mθ[1,N]
x̂̂x̂xo +Zθ[1,N]

). (24)

Even though S constructs a single set of strategies {ηk ∈
ϒ} without knowing C’s type, the resulting sensor outputs
{sssk =ηk(xxxk)} may depend on the state xxxk, hence C’s type and
correspondingly θ[1,N]. However, since the problem entails
classical information as shown in Section IV of [5], x̂̂x̂xo

does not depend on θ[1,N]. Therefore, let uuu∗
θ[1,N],k

be the
corresponding control input at time k according to (24) for a
given realization θ[1,N]. Then, the objective function (9a) is
given by

min
ηk∈ϒ,

k=1,...,n

E

{
n

∑
k=1
‖xxxθθθ [1,N],k+1‖2

QF
+‖uuu∗

θθθ [1,N],k
‖2

RF

}
. (25)

After some algebra5, (25) can be written as

min
ηk∈ϒ,

k=1,...,n

E‖Φ(1)
F uuu∗

θθθ [1,N]
+K(1)

F xxxo‖2
∆ +G, (26)

where G := tr{Σ1(Q̌F,1−QF)}+∑
n
k=1 tr{ΣvQ̌F,k+1},

∆ :=

[
∆F,n

. . .
∆F,1

]
,

and Q̌F,k and ∆F,k are defined in (14) and (13), respectively.
Next, we introduce the parameters:

Ξθθθ [1,N]
:=−Φ

(1)
F (I +Tθθθ [1,N]

)−1Mθθθ [1,N]
, (27a)

ξθθθ [1,N]
:=−Φ

(1)
F (I +Tθθθ [1,N]

)−1Zθθθ [1,N]
, (27b)

almost everywhere on Rnr×nm and Rnm, respectively. Then,
we obtain

min
ηk∈ϒ,

k=1,...,n

E‖Ξθθθ [1,N]
x̂̂x̂xo +ξθθθ [1,N]

+K(1)
F xxxo‖2

∆ +G, (28)

which has identical form with equation (61) in [5]. For
notational simplicity, let K := K(1)

F , Ξθθθ := Ξθθθ [1,N]
and ξθθθ :=

ξθθθ [1,N]
. And following similar lines with [5], the optimization

problem (28) can be written as

min
ηk∈ϒ,

k=1,...,n

tr


 Hn AHn−1 ··· An−1H1

Hn−1A′ Hn−1 ··· An−2H1...
...

. . .
...

H1(An−1)′ H1(An−2)′ ··· H1

Π

+Πo, (29)

where

Π := E{Ξ′
θθθ

∆Ξθθθ +Ξ
′
θθθ

∆K +K′∆Ξθθθ}, (30a)
Πo := tr{ΣoK′∆K}+ tr{E{ξθθθ ξ

′
θθθ
}∆}+G, (30b)

Σ
o := E{xxxo(xxxo)′}=


Σo

n AΣo
n−1 ··· An−1Σo

1
Σo

n−1A′ Σo
n−1 ··· An−2Σo

1...
...

. . .
...

Σo
1(A

n−1)′ Σo
1(A

n−2)′ ··· Σo
1

 ,
5Omitted steps are identical to the derivation of uuu∗F,k , which can be found

in [5].

and Hk := E{ x̂̂x̂xo
k( x̂̂x̂xo

k)
′}, x̂̂x̂xo

k = E{xxxo
k |sss[1,k]} and xxxo

k evolves
according to (11). Hence, the optimization problem (29)
faced by S can be written as an affine function of Hk’s as
follows6:

min
ηk∈ϒ,

k=1,...,n

n

∑
k=1

tr{VkHk}+Πo, (31)

for certain symmetric deterministic matrices Vk ∈Rm×m, k =
1, . . . ,n, which are given by

Vk := Πk,k +
n

∑
l=k+1

Πk,lAl−k +(Al−k)′Πl,k, (32)

and Πk,l is the corresponding m×m sub-block of Π. We note
that the expectation in (30) is taken over all O(tN) scenarious.
S can compute the expectation numerically through the
Monte Carlo method [14].

Next, we aim to compute the solutions of the nonlinear
(possibly non-convex) optimization problem (31) via an
analytical approach instead of brute force approaches,
e.g., particle swarm optimization [15], that would search
n matrices with m×m dimensions over nm2 dimensional
space, i.e., Rnm2

. To this end, similar to [5], we employ
the approach in [16], which considers a semi-definite
programming problem that bounds (31) from below, and
then, computes strategies for the original problem, which
can optimize the lower bound. Based on this, the following
theorem characterizes equilibrium achieving secure sensor
strategies.

Theorem 1. The optimal linear secure sensor strategies can
be computed via Algorithm 1, described in Table I.

Proof. Note that (31) has identical compact form with
equation (68) in [5] for different matrices Π and Πo. Then,
based on Lemma 3 in [16], the proof follows by the proof
of Theorem 2 in [5]. Particularly, the lower bound is given
by

min Sk∈Sm,
k=1,...,n

∑
n
k=1 tr{VkSk} ≤ min ηk∈ϒ,

k=1,...,n
∑

n
k=1 tr{VkHk},

s.t. Σo
j � S j � AS j−1A′ ∀ j

(33)
where Σo

j = E{xxxo
j(xxx

o
j)
′}, S0 := O. By Theorem 4 in [16], the

solution of the lower bound in (33), S∗1, . . . ,S
∗
n, is given by

S∗k =AS∗k−1A′+(Σo
k−AS∗k−1A′)1/2Pk(Σ

o
k−AS∗k−1A′)1/2, (34)

for k = 1, . . . ,n, where S∗0 = O and Pk ∈ Sm is a certain
symmetric idempotent matrix. On the other hand, for given
sssk = L ′

kxxxk, Hk has the following recursion:

Hk = AHk−1A′+(Σo
k−AHk−1A′)Lk(L

′
k(Σ

o
k−AHk−1A′)Lk)

†

×L ′
k(Σ

o
k−AHk−1A′). (35)

Then, the optimal secure sensor strategies are given by

Lk = (Σo
k−AS∗k−1A′)−1/2UkΛk. (36)

where Uk,Λk ∈ Rm×m are the matrices in the eigen decom-
position of Pk in (34), i.e., Pk =UkΛkU ′k. �

6Hk depends on the optimization arguments η[1,n] due to sssk = ηk(xxxk).
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TABLE I: Detailed description of Secure Sensor Design
Algorithm.

Algorithm 1: Secure Sensor Design

Compute Vk’s:
Compute KF,k,∆F,k , and KAi ,k for k = 1, . . . ,n and i = 1, . . . , t

via (13) and (17).

Compute Φ
(1)
F by (12), Φ

(1)
Ai

by (16), and F(1) by (18).7

For all θ[1,N] ∈Ω:
Compute Tθ[1,N]

and Mθ[1,N]
, given by (23).

Compute Ξθ[1,N]
and ξθ[1,N]

via (27).

Compute Π and Πo, given by (30), based on Ξθ[1,N]
,ξθ[1,N]

.

Then, compute Vk , k = 1, . . . ,n, via (32).

SDP Problem:
Solve the SDP problem on the left hand side of (33) through

a numerical toolbox, e.g., CVX [17], [18], and obtain the

solutions S∗k , for k = 1, . . . ,n.

Set S∗0 = O.

Optimal secure sensor strategies:
Compute the corresponding idempotent matrices Pk ,∀k, by

using S∗k , ∀k, and (34).

Compute the eigen decompositions: Pk =UkΛkU ′k .

Compute Lk , ∀k, by using S∗k−1,Uk,Λk , and (36).

And ηk(xxxk) = L ′
kxxxk .

V. CONCLUSION

In this paper, we have introduced a secure sensor design
framework for resiliency of cyber-physical systems prior
to the attack detection. We have specifically considered
LQG control systems, where the controller could have been
compromised within the operation by various attackers with
certain adversarial control objectives. The controller (and
correspondingly the attacker when infiltrated into it) has
access to the sensor outputs and the previous control inputs.
Therefore, we have sought to design the linear sensor outputs
cautiously by taking the possibility of undetected attacks into
consideration. We have provided an algorithm to compute the
secure sensor outputs that lead to the minimum damage in
terms of system’s quadratic control objective.

Some future directions of research on this topic include:
identification of attacker objectives based on the previous
control inputs so that the system can update (enhance) the
belief about the underlying attack statistics based on such
identifications and the scenarios where the sensor has partial
or noisy observation of the state.
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