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Abstract— We analyze deceptive multi-dimensional informa-
tion disclosure over a channel between an information provider
and a decision maker. The information provider has access to
noisy versions of an underlying information. Different from the
classical communication models, the provider has a different
(hidden) objective while he/she must still honestly and transpar-
ently provide the information for his/her reputation. However,
how well the provider has access to the information is private
to him/her. We address how he/she can exploit this asymmetry
according to his/her deceptive goal by modeling the interaction
as a Stackelberg game, where the information provider is
the leader. With quadratic objective functions, multi-variate
Gaussian information and additive Gaussian noise channel, we
analytically formulate the optimal linear deception strategy and
the corresponding optimal decision strategy.

I. INTRODUCTION
In the era of information, new enterprises have specialized

to collect huge amount of data related to certain phenomena
that is essential for the decision mechanisms, to process the
data via enhanced computational capabilities according to
the decision makers’ needs, and to provide the processed
information with certain quality guarantees. As an example,
in [1], the market participants can acquire the information
about the estimated real-time price of the electricity in
order to compute their acceptability set in the introduced
cash-settled options market. However, the essence of the
information in the decisions made arises the possibility
of manipulation. Can an information provider deceive the
decision maker via the provided information so that the
decision moves in the direction the information provider has
desired? Particularly, can an information provider control the
decision maker’s perception about the desired information
according to certain hidden goals? For example, in the
scenario of [1], as mentioned above, can the estimated price
provider control the acceptability set of a market participant
maliciously for the benefit of the other? Furthermore, in
such a business transaction, trustworthiness is essential for
the reputation of the information provider. Then, under the
constraint of reputation, i.e., to provide the committed quality
guarantee in the provided information, could the information
provider still deceive the decision maker? To this end, we
seek to address, in this paper, these, possible, issues from
a deceptive information provider’s perspective, e.g., how the
information provider can deceive the decision maker, so that
this study can lead to new studies that provide secure, i.e.,
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not deceptive, information transmission for unmanipulated
decisions.

Strategic information transmission between a sender and
a receiver with misaligned objectives was originally intro-
duced in [2] and studied in various applications including
advertising to expert advise sharing problems [3]–[5]. In [2],
the sender’s objective has an additive bias term, commonly
known by the sender and the receiver, while the receiver’s
objective is independent of the bias term. In particular, the
sender seeks to shift the receiver’s perception about the
underlying information by the amount of the bias. Under
Nash equilibrium [6], the authors have shown that only a
quantization-based mapping of the scalar information drawn
from a bounded distribution leads to an equilibrium. In
[7], the authors have extended the strategic information
transmission to multi-dimensional settings for quadratic loss
functions by relaxing the boundedness assumption about the
underlying distribution. They have also studied the multi-
dimensional information disclosure over same dimensional
additive noise channel and obtained conditions under which
an informative affine equilibrium exists.

Recently, the strategic information transmission in a hier-
archical setting, where the information provider is truthful
about the content of the provided information, has attracted
substantial interest in control theory, information theory,
and economics [8]–[14]. In [9], the authors study strategic
sensor networks with perfect channels for Markov-Gaussian
processes and with myopic quadratic objective functions,
i.e., the players construct strategies just for the current
stage irrespective of the length of the horizon, by restricting
the receiver strategies to affine functions. Reference [8]
addresses the optimality of linear sender strategies within
the general class of policies for myopic quadratic objec-
tives. In [7] and [10], the authors show that for scalar
parameters, quadratic loss functions, and a commonly known
bias parameter, the hierarchical game formulation can be
converted into a team problem. Reference [11] shows that
linear sender strategies for scalar Gaussian information can
achieve the equilibrium within the general class of policies
even with additive Gaussian noise channels. In [12], the
author demonstrates the optimality of linear sender strate-
gies also for the multi-variate Gaussian information, and
with quadratic loss functions. In [13], the authors show
the optimality of linear strategies also for Markov-Gaussian
processes with finite horizon quadratic loss functions both
in the communication and control settings. Recently, based
on the strategic information transmission in a hierarchical
structure, in [14], the authors have introduced secure sensor
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design, which is a passive security mechanism for cyber-
physical systems against the advanced persistent threats that
are difficult to detect, i.e., the sensor outputs are designed
strategically by anticipating the possibility of undetected
threats.

In this paper, we analyze multi-dimensional information
disclosure between a deceptive information provider and
a decision maker over an additive Gaussian noise channel
with a power constraint. Due to the deceptive objective
of the information provider, this scheme differs from the
classical communication problems over a channel. We con-
sider the underlying information drawn from a multi-variate
Gaussian distribution and the information provider has ac-
cess to (jointly Gaussian) noisy versions of the underlying
information. In addition to the power constraint on the
sent signal, the information provider also has a reputation
constraint such that he/she must be transparent about the
content of the sent signal and honest about the quality of
the disclosed information, i.e., about the relation of the
sent signal and the underlying information. Therefore, the
interaction between the information provider and the decision
maker can be modeled as a Stackelberg game, where the
information provider is the leader of the game by announcing
his/her strategies beforehand, i.e., by being transparent about
the content of the sent signal. Here, for linear information
provider strategies, we analytically formulate the optimal
deception strategies and the corresponding optimal decision
strategies. We emphasize that this study differs from [12]
and [9] due to the additive noise channel, differs from [11]
due to the multi-dimensional information, and differs from
[7] due to the general quadratic loss functions and privately,
i.e., not commonly known, bias parameter such that the
scheme does not lead to a team problem in the hierarchical
setting and due to analytical formulation of the equilibrium
achieving strategies under linearity constraint rather than
characterization of the conditions where an informative affine
equilibrium exists.

The main contributions of this paper are as follows:

• We study deceptive multi-dimensional information dis-
closure over a Gaussian channel in a Stackelberg game
setting, where the information provider is the leader.

• We model the objective of the deceptive information
provider as a convex combination of the decision
maker’s objective and a deceptive objective such that
depending on the weights in the convex combination the
degree of misalignment between the objectives varies.

• We formulate the optimal linear deception strategies and
the corresponding decision strategies in closed form.

The paper is organized as follows: In Section II, we formu-
late the deceptive multi-dimensional information disclosure
problem and the corresponding game between the informa-
tion provider and the decision maker. In Section III, we
derive the optimal linear decision and the optimal decision
strategies analytically. We provide illustrative examples in
Section IV. We conclude the paper in Section V with several
remarks. Appendices provide proofs for technical results.

Deceptive
Information 

Provider

Channel Decision 
Maker

Actual 
information

Reported 
information

Received 
information

Perceived 
information

Fig. 1. Deceptive information disclosure.

II. PROBLEM FORMULATION

Consider two agents: a deceptive information provider
and a decision maker, as seen in Fig. 1. The deceptive
information provider has access to noisy versions of certain
multi-dimensional information1 x ∈ R

n, n ≥ 1, in which
the decision maker is interested. The information provider
reports s ∈ R and its relation with x. Furthermore, this
reported information can be received by the decision maker
after passing through a channel, where p(y|s) represents the
probability of receiving y ∈ R given that s has been reported.
Based on the received information y and its relation with
the actual information x, the decision maker constructs an
estimate of x, which is denoted by x̂ ∈ R

n. In particular,
x̂ is the decision maker’s perception of x and different
from the classical communication setting, here the deceptive
information provider seeks to control the decision maker’s
perception according to his/her own, possibly malicious,
objective.

In this paper, we specifically consider that the multi-
dimensional information is a realization of a multi-variate
Gaussian random vector xxx ∼ N(0,Σx). The informa-
tion provider observes noisy versions of the information:
z1, . . . , zm ∈ R

n, m ≥ 1, that are independent realizations
of the random vector zzz = Ax + vvv, where2 A ∈ R

n×n,
vvv ∼ N(0,Σv), and vvv is independent of xxx. After observing
z := z1, . . . , zm, the information provider can construct
s = η(z) such that η(·) is a linear function from R

mn to R.
Then, the reported information s passes through an additive
Gaussian noise channel, i.e., yyy = sss+www, where www ∼ N(0, σ2

w)
and www is independent of both xxx and vvv. After receiving y, the
decision maker constructs x̂ = γ(y), where γ(·) is a Borel
measurable function from R to R

n. In this stochastic setting,
we assume that both agents commonly know that

• statistics of the information xxx and the channel noise www
are known by both agents;

• the observation of the information provider is an affine
function of x and the reported information s is affine
in z;

1Notations: N(0, .) denotes Gaussian distribution with zero mean and
designated (positive-definite) covariance matrix or variance depending on
whether it is multi-variate or not. We denote random variables by bold
lower case letters and their realizations by the same lower case letters,
e.g., xxx and x. For a vector x and a matrix A, x′ and A′ denote their
transposes, respectively, and ‖x‖ denotes the Euclidean (L2) norm of the
vector x. For a matrix A, tr{A} denotes its trace. We denote the identity
and zero matrices with the associated dimensions by I and O, respectively.
For positive semi-definite matrices A and B, A � B means that A−B is
also a positive semi-definite matrix. We note that all the random parameters
have zero mean; however, the derivations can straight-forwardly be extended
to non-zero mean case.

2Note that we do not make any assumption about the rank of A.
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• the content of z, i.e., how z and x are related, is known
only by the information provider;

• the information provider is committed to be truthful
about the content of the reported information. In partic-
ular, since the reported information sss and the actual
information xxx are jointly Gaussian, the information
provider discloses truthfully both first and second order
statistics of this joint distribution;

• the decision maker is not aware of, or not interested
in, whether the information provider has a hidden goal
or not since the information provider does not lie
about the content of the reported information while
the information provider knows the decision maker’s
objective.

In a classical communication scenario, the objectives of
the agents would be aligned and the information provider
would choose η(·) to mitigate the impact of the channel.
However, here, the deceptive information provider has a
different objective. Particularly, the information provider
wants the decision maker to perceive x as his/her private
information θ ∈ R

n, which is a realization of θθθ ∼ N(0,Σθ).
Therefore, the deceptive information provider constructs the
reported information via s = η̂(z, θ), where η̂(·) is a linear
function from R

(m+1)n to R. We consider that θθθ is jointly
Gaussian with xxx and can be dependent or independent of xxx,
and yet is independent of vvv and www.

Let Ω and Γ denote the set of all linear functions from
R

(m+1)n to R and the set of all Borel measurable functions
from R to R

n, respectively. Then, the deceptive information
provider seeks to control the decision maker’s perception of
x such that

min
η̂∈Ω

λE‖xxx− x̂̂x̂x‖2R + (1− λ)E‖θθθ − x̂̂x̂x‖2Q, (1)

subject to power constraint:

E{sss2} ≤ P, (2)

where λ ∈ [0, 1] and3 Q,R ∈ S
n are positive-definite

matrices. On the other hand, the decision maker seeks to
estimate the actual information x such that

min
γ∈Γ

E‖xxx− x̂̂x̂x‖2R. (3)

Note that since R is positive-definite, there exists a unique
solution of (3). Furthermore, λ determines how much the
objectives of the agents are aligned. As an example, λ = 1
implies a classical communication scenario, where the agents
have the same objective.

We note that by knowing the first and second order statis-
tics of the joint distribution of xxx and sss, the decision maker
knows the content of the received information, i.e., the rela-
tion between y and x, since they are jointly Gaussian. This
implies that there is a hierarchy between the agents. There-
fore, the interaction between the non-cooperative agents can
be analyzed as a Stackelberg game [6], where the information
provider takes action by constructing s = η̂(z, θ) and the

3Sn denotes the set of symmetric n× n matrices.

decision maker takes action by constructing4 x̂ = γ(y; η̂).
Furthermore, the information provider is the leader of the
game, by announcing his/her strategy beforehand; and the
decision maker is the follower. Note that we can also view
this as the information provider choosing a strategy η̂ from
the associated strategy space Ω and the decision maker
choosing a strategy γ from the strategy space Γ, and cor-
responding to the objective functions (1) and (3), there exist
certain cost functions depending on the agents’ strategies η̂
and γ: JL(η̂, γ) and JF (η̂, γ) while each strategy implicitly
depends on the other. This would be the normal (strategic)
form description of the underlying game [6]. Therefore, the
pair of strategies [η̂∗, γ∗] attains the Stackelberg equilibrium
provided that

η̂∗ = argmin
η̂∈Ω

JL(η̂, γ
∗(·; η̂)) s.t. E{η̂(zzz,θθθ)2} ≤ P, (4a)

γ∗(·, η̂) = argmin
γ∈Γ

JF (η̂, γ(·; η̂)). (4b)

III. MAIN RESULT

In this section, we formulate the optimal deception strate-
gies for the information provider analytically in closed form.
To this end, we first aim to compute the decision maker’s
perception of x given the received information y. By (3),
and since R � O, the best reaction of the decision maker
is given by x̂∗ = E{xxx|yyy = y} and correspondingly, we
have x̂̂x̂x∗ = E{xxx|yyy} almost everywhere on R

n. Then, the
optimization problem faced by the information provider is
given by

min
η̂∈Ω

λE‖xxx− x̂̂x̂x∗‖2R + (1− λ)E‖θθθ − x̂̂x̂x∗‖2Q (5)

subject to (2).
We note that sss = η̂(zzz,θθθ) can be written as

sss = c′zzzz + c′θθθθ, (6)

where cz ∈ R
mn and cθ ∈ R

n, almost everywhere on R.
Then, (5) can be written as

min
cz∈Rmn,cθ∈Rn

λE‖xxx− E{xxx|c′zzzz + c′θθθθ +www}‖2R
+(1− λ)E‖θθθ − E{xxx|c′zzzz + c′θθθθ +www}‖2Q (7)

subject to
E{(c′zzzz + c′θθθθ)

2} ≤ P (8)

and

E{xxx|c′zzzz+c′θθθθ+www} =
(E{xxxzzz′}cz + E{xxxθθθ′}cθ)(c′zzzz + c′θθθθ)

E{(c′zzzz + c′θθθθ)2}+ σ2
w

.

We emphasize that even though (7) is a finite dimensional
optimization problem, it is highly nonlinear and non-convex
with a quadratic constraint unless λ = 1. Therefore,
numerical computation of the solution requires exhaustive
search over R

(m+1)n and it may not lead to the global
minimum. However, in the following, we provide a closed
form solution for the problem by formulating an optimization

4We denote the decision maker’s strategy by x̂ = γ(y; η̂) instead of
x̂ = γ(y) in order to show the dependence on η̂ explicitly.
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problem bounding the original problem from below, solving
that new problem in closed form, and then showing that
the minimum can be achieved in the original problem via
certain vectors c∗z, c

∗
θ , which implies that they are also

the solution of the original optimization problem (7). The
following theorem provides the analytically computed,
equilibrium achieving, strategies.

Theorem 1. Consider multi-dimensional information disclo-
sure over additive Gaussian noise channel. Let uuu := [xxxθθθ ],
ttt := [ zzzθθθ ] and Σu := E{uuuuuu′}, Σt := E{tttttt′}. Furthermore, let

W :=
P

P + σ2
w

Σ
−1/2
t ĀΣuV ΣuĀ

′Σ−1/2
t , (9)

where5

V :=
[
−λR+(1−λ)Q −(1−λ)Q

−(1−λ)Q O

]
and Ā :=

[
1⊗A O
O I

]
. (10)

Then, the equilibrium achieving pair of strategies [η̂∗, γ∗] is
given by

η̂∗(ttt) = (c∗)′ttt and γ∗(yyy) = b∗yyy, (11)

where c∗ ∈ R
(m+1)n and b∗ ∈ R

n. These vectors are given
by

c∗ =
√
PΣ

−1/2
t q (12)

and
b∗ =

ρxs
σ2
s + σ2

w

, (13)

where ρxs =
√
PΣuĀ

′Σ−1/2
t q and σ2

s = P are the first
and second order statistics of the joint distribution of xxx and
sss, and q ∈ R

(m+1)n is the eigenvector of W , such that
‖q‖ = 1, corresponding to the smallest eigenvalue denoted
by λmin(W ).

Furthermore, the outcomes of the game are given by

J∗
L = λmin(W ) +G,

where G =
[
λR O
O (1−λ)Q

]
and

J∗
F = Tr{ΣxR}− P

P + σ2
w

q′Σ−1/2
t ĀΣu [R O

O O ] ΣuĀ
′Σ−1/2

t q.

Proof. Let u := [ xθ ] and correspondingly uuu := [xxxθθθ ] almost
everywhere on R

2n, and define û̂ûu := E{uuu|yyy}. Furthermore,
let U := [ I O ] and D := [O I ]. Then, by (5), we have

min
η̂∈Ω

λE‖Uuuu− Uû̂ûu‖2R + (1− λ)E‖Duuu− Uû̂ûu‖2Q, (14)

which can be written as

min
η̂∈Ω

E{uuu′(λU ′RU + (1− λ)D′QD)uuu}
− 2E{uuu′(λU ′RU + (1− λ)D′QU)û̂ûu}
+ E{û̂ûu′(λU ′RU + (1− λ)U ′QU)û̂ûu}. (15)

5Another definition for V is provided at (18). 1 ∈ Rm is a vector whose
terms are 1 and ⊗ refers to the Kronecker product.

Information Observations Sent signal Received 
signal

Learnt 
observation

Learnt 
information

Fig. 2. Evolution of information during transmission from the information
provider to the decision maker.

We note that for an arbitrary matrix Δ ∈ R
2n×2n, we have

E{û̂ûu′Δuuu} = E{E{û̂ûuΔuuu|yyy}}
= E{û̂ûu′ΔE{uuu|yyy}}
= E{û̂ûu′Δû̂ûu}, (16)

where the first line follows due to the law of iterated
expectations, and the second line follows since û̂ûu is a
bounded function of yyy almost everywhere, and given yyy, û̂ûu
is deterministic. Note also that the first term in (15) does not
depend on the optimization arguments, and hence (5) can be
re-written as

min
η̂∈Ω

E{û̂ûu′V û̂ûu}+G, (17)

where

V = −λU ′RU + (1− λ)(U ′QU −D′QU − U ′QD) (18)

and G := Tr{E{uuuuuu′}(λU ′RU + (1− λ)D′QD)} subject to
(2).

We first define intermediate parameters ttt := [ zzzθθθ ] and
t̂̂t̂t := E{ttt|yyy}. Then, the following lemma implies that
yyy → t̂̂t̂t → û̂ûu form a Markov chain in that order.

Lemma 1. For zero-mean jointly Gaussian parameters xxx,
sss, and yyy that form a Markov chain xxx → sss → yyy in this
order, the conditional expectations with respect to yyy satisfy
the following equality:

E{xxx|yyy} = E{xxxsss}E {ssssss′}−1
E{sss|yyy}. (19)

Proof. The proof is provided in Appendix A. �

By Lemma 1, there exists a matrix B ∈ R
2n×(m+1)n such

that û̂ûu = Bt̂̂t̂t, i.e.,

B := E{uuuttt′}E{tttttt′}−1. (20)

Therefore, the random parameters uuu → ttt → sss → yyy → t̂̂t̂t → û̂ûu
form a Markov chain in that order as seen in Fig. 2. The
following lemma provides an inequality between the jointly
Gaussian random variables that form a Markov chain.

Lemma 2. Let xxx,yyy,zzz, ttt be jointly (possibly multi-variate)
Gaussian random parameters with positive-definite covari-
ance matrices Σj for j = {xxx,yyy,zzz, ttt}, joint and cross
covariance matrices Σιi and ρji, respectively, for j, i ∈
{xxx,yyy,zzz, ttt} and j 
= i, e.g.,

Σxt =
[

Σx ρxt

ρtx Σt

]
,
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such that they form a Markov chain in the following order:
xxx → yyy → zzz → ttt. Then, we have the following inequality6:

det(I − ρzyΣ
−1
y ρyzΣ

−1
z ) ≤ det(I − ρtxΣ

−1
x ρxtΣ

−1
t ). (21)

Proof. The proof is provided in Appendix B. �

We note that since t̂̂t̂t is σ−yyy measurable, t̂̂t̂t is a degenerate
Gaussian random vector with a rank-1 covariance matrix
T := E{t̂̂t̂tt̂̂t̂t′}. To this end, we define t̃̃t̃t := t̂̂t̂t + εμμμ, where
ε > 0 and μμμ ∼ N(0, I), such that ttt → sss → yyy → t̃̃t̃t form a
Markov chain in that order. Then, we have I(ttt; t̃̃t̃t) ≤ I(sss;yyy)
and Lemma 2 yields

1− σ2
s

σ2
s + σ2

w

≤ det(I − E{t̃̃t̃tttt′}E{tttttt′}−1
E{tttt̃̃t̃t′}E{t̃̃t̃tt̃̃t̃t′}−1),

which can also be written as

1− σ2
s

σ2
s + σ2

w

≤ det(I − E{t̂̂t̂tttt′}E{tttttt′}−1
E{tttt̂̂t̂t′}(E{t̂̂t̂tt̂̂t̂t′}+ ε2I)−1).

By the matrix determinant lemma [15], we have

det(I − E{t̂̂t̂tttt′}E{tttttt′}−1
E{tttt̂̂t̂t′}(E{t̂̂t̂tt̂̂t̂t′}+ ε2I)−1)

= det(I − E{tttt̂̂t̂t′}(E{t̂̂t̂tt̂̂t̂t′}+ ε2I)−1
E{t̂̂t̂tttt′}E{tttttt′}−1). (22)

Note also that E{tttt̂̂t̂t′} = E{E{tttt̂̂t̂t′|yyy}} by the law of iterated
expectations, which implies that E{tttt̂̂t̂t′} = E{E{ttt|yyy}t̂̂t̂t′} since
t̂̂t̂t is σ−yyy measurable and t̂̂t̂t is a bounded function of yyy almost
everywhere. Therefore, we obtain

E{tttt̂̂t̂t′} = E{t̂̂t̂tt̂̂t̂t′}. (23)

Then, by (22), we have

det(I − E{t̂̂t̂tttt′}E{tttttt′}−1
E{tttt̂̂t̂t′}(E{t̂̂t̂tt̂̂t̂t′}+ ε2I)−1)

=det(I − T (T + ε2I)−1TE{tttttt′}−1) (24)

for ε > 0. Furthermore, let T � O have a Cholesky
decomposition T = LL′ such that7

lim
ε→0

det(I − T (T + ε2I)−1T ′
E{tttttt′}−1)

= lim
ε→0

det(I − LL′(LL′ + ε2I)−1LL′
E{tttttt′}−1)

(a)
= det(I − LL+LL′

E{tttttt′}−1)

(b)
= det(I − TE{tttttt′}−1)

(c)
= 1− Tr{TE{tttttt′}−1}, (25)

where (a) follows by the limit based definition of pseudo-
inverse and since det(·) is a continuous function, (b) follows
since L = LL+L, and (c) follows by the matrix determinant
lemma. Therefore, we obtain

Tr{TE{tt′}−1} ≤ σ2
s

σ2
s + σ2

w

. (26)

6For the degenerate case, i.e., if the covariance matrix is not full rank,
the inequality (21) may not hold since (42) does not hold.

7A+ refers to the pseudo-inverse of A [15].

By the power constraint (2), σ2
s ≤ P . Since σ2

s/(σ
2
s + σ2

w)
is an increasing function of σ2

s , we have

σ2
s

σ2
s + σ2

w

≤ P

P + σ2
w

.

Let P̄ := P/(P + σ2
w) and Σt := E{tt′}; then, (26) implies

that
Tr{TΣ−1

t } ≤ P̄ . (27)

Furthermore, by û̂ûu = Bt̂̂t̂t, the main optimization problem
(17) can be written as

min
η̂∈Ω

Tr{T V̄ }+G (28)

subject to (2), where V̄ := B′V B. Note that (27) is a
necessary condition that T should satisfy based on the con-
straint (2). Then, a lower bound on the original optimization
problem is given by

min
S̄∈S(m+1)n

Tr{S̄V̄ }+G (29)

s.t. Tr{S̄Σ−1
t } ≤ P̄ , S̄ � O.

since T � O.
Let S := (1/P̄ )Σ

−1/2
t S̄Σ

−1/2
t . Then, S̄ = P̄Σ

1/2
t SΣ

1/2
t

and (29) can be written as

min
S∈S(m+1)n

Tr{SW}+G (30)

s.t. Tr{S} ≤ 1, S � O,

where W := P̄Σ
1/2
t V̄ Σ

1/2
t .

We note that the optimization objective in (30) is linear
in the optimization argument while the constraint set
Φ := {S ∈ S

(m+1)n|Tr{S} ≤ 1, S � O} is non-empty
compact, and convex. Therefore, the global minimum is
attained at the extreme points8 of Φ. The following lemma
characterizes the extreme points of Φ.

Lemma 3. A point Se in Φ is an extreme point if, and only
if, Se has at most one non-zero eigenvalue, which can only
be 1.

Proof. The proof is provided in Appendix C. �

By Lemma 3, the solution S∗ of (30) is either a positive
semi-definite matrix, which has a single non-zero eigenvalue,
whose value is 1; or a zero matrix. This implies that there
exists a vector ζ ∈ R

(m+1)n such that ‖ζ‖ = 1 (or 0), and
S∗ = ζζ ′, i.e., ζ is an eigenvector of S∗ corresponding to
the eigenvalue 1 (or just a zero vector). Correspondingly, the
minimum of (30) yields Tr{ζζ ′W} = ζ ′Wζ while for all
p ∈ R

(m+1)n such that ‖p‖ = 1, p′Wp ≥ q′Wq, where
q ∈ R

(m+1)n is the eigenvector of W corresponding to the
smallest eigenvalue. This implies that if the smallest eigen-
value of W is non-positive, then ζ = q, and correspondingly,
S∗ = qq′; otherwise, i.e., if the smallest eigenvalue of W is
positive, then S∗ = S̄∗ = O.

8A point of a convex set is an extreme point, if it cannot be written as a
convex combination of any other points in the set.
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We note that the case when the smallest eigenvalue of
W is positive implies that W is a positive-definite matrix.
However, since W = P̄Σ

1/2
t B′V BΣ

1/2
t and Σt is non-

singular, W and B′V B are congruent matrices and B′V B
has a rank at most 2n due to V ∈ S

2n, i.e., B′V B is singular,
and therefore, not a positive-definite matrix. Sylvester’s law
of inertia [16] implies that W and B′V B have the same
positive and negative indices of inertia, i.e., they have the
same number of positive, negative, and zero eigenvalues.
Correspondingly, W is not a positive-definite matrix, and
therefore, the smallest eigenvalue of W is not positive.

Since η̂ ∈ Ω, there exists a vector c ∈ R
(m+1)n such that

s = η̂(t) = c′t. Then, the decision maker receives y = c′t+w
and correspondingly, we have

t̂̂t̂t =
E{tttyyy}

E{sss2}+ σ2
w

yyy =
E{tttttt′}c(c′ttt+www)

c′E{tttttt′}c+ σ2
w

. (31)

This leads to

E{t̂̂t̂tt̂̂t̂t′} =
Σtcc

′Σt

c′Σtc+ σ2
w

. (32)

Note that if we select c =
√
PΣ

−1/2
t q, which also satisfies

the power constraint (2), then by (31), we obtain T =

P̄Σ
1/2
t qq′Σ1/2

t , and substituting it in (28) yields

Tr{P̄Σ
1/2
t qq′Σ1/2

t V̄ } = Tr{qq′W} = λmin(W ), (33)

which leads to the global minimum of the lower bound,
i.e., λmin(W ) ≤ 0. Therefore, we conclude that the best
deception strategy is given by sss = (c∗)′ttt, where c∗ =√
PΣ

−1/2
t q. Correspondingly, by (20) and (31), the best

decision is given by û̂ûu = b∗yyy, where

b∗ = E{uuuttt′}Σ−1
t

√
PΣtΣ

−1/2
t q

P + σ2
w

.

Note that zzz can be written as

zzz =

[
zzz1

...
zzzm

]
= (1⊗A)uuu+

[
vvv1

...
vvvm

]
, (34)

where 1 ∈ R
m denotes the vector whose entries are all

1, ⊗ refers to the Kronecker product [16], and vvvi’s have
independent and identical distribution, which is the same
with vvv. Then, the cross correlation between uuu and ttt is given
by

E{uuuttt′} = E{uuuuuu′} [ 1⊗A O
O I

]′
. (35)

Furthermore, the outcome of the game for the information
provider is given by

J∗
L = λmin(W ) +G (36)

while the outcome of the game for the decision maker is
given by

J∗
F = E‖Uuuu− Uû̂ûu∗‖2R,
= E{uuu′U ′RUuuu} − 2E{uuu′U ′RUû̂ûu∗}+ E{(û̂ûu∗)′U ′RUû̂ûu∗},
(a)
= Tr{ΣxR} − Tr{E{û̂ûu∗(û̂ûu∗)′}U ′RU},
= Tr{ΣuU

′RU} − Tr{T ∗B′U ′RUB},
(b)
= Tr{ΣuU

′RU} − P̄ q′Σ1/2
t B′U ′RUBΣ

1/2
t ,

where (a) follows due to the law of iterated expectations
and (b) follows by (20) and (35). This completes the proof. �

Remark 1. We point out that in Reference [12], the author
addresses the multi-dimensional information disclosure in
strategic environments without a channel and shows the
optimality of linear strategies within the general class of
strategies. However, here, we consider an additive noise
channel between the information provider and the decision
maker. When there is a channel in between, even in the
non-strategic environments, where the information provider
and the decision maker have the same objective, linear
strategies are not optimal within the general class of
strategies in multi-variate Gaussian information disclosure
in general [17].

Remark 2. When λ = 1 and R = Q = I , both agents
have the same objective, which is to minimize E{‖xxx− x̂̂x̂x‖2}.
Then, if the information provider has perfect access to the
information x, i.e., z = x, Theorem 1 also implies that the
optimal linear strategy is s =

√
P/λmax(Σx)q

′
xx, where qx

is the eigenvector of Σx, such that ‖qx‖ = 1, corresponding
to λmax, as also shown in [18].

Remark 3. If the information provider has perfect access
to the information x, i.e., z = x and t = u, and there is a
perfect channel, where the information provider can transmit
a vector of dimension R

2n, then Reference [12] shows that
the optimal information disclosure strategy is given by so =
(C∗

o )
′t, where Co ∈ R

2n×r is given by

C∗
o = Σ

−1/2
t Q−, (37)

and Q− = [ q1 ··· qr ] is the eigenvectors of Wo =

Σ
1/2
t V Σ

1/2
t associated with the negative eigenvalues λ1 ≤

λ2 ≤ . . . ≤ λr. Correspondingly, when the information
provider has perfect access to the information x, we show
that if there is a scalar channel, then by Theorem 1, the
optimal information disclosure strategy would be given by
s = (c∗)′t, where

c∗ =
√
PΣ

−1/2
t q, (38)

and q ∈ R
2n is the eigenvector of W = (P/(P +

σ2
w))Σ

1/2
t V Σ

1/2
t associated with the minimum negative

eigenvalue, given by (P/(P + σ2
w))λ1. Note that q is also

the eigenvector of Σ1/2
t V Σ

1/2
t associated with the minimum

negative eigenvalue since P/(P+σ2
w) > 0. Therefore, under

the linearity constraint on the strategies of the information
provider, there does not exist game-channel separation such
that we can compute the equilibrium achieving strategy
pair η̂∗, γ∗ as if there is a perfect channel between the
information provider and the decision maker, and then
transmit η̂∗(ttt) to mitigate the impact of the channel.
Therefore the game and the channel should be considered
jointly. However, interestingly, c∗ is the first column of C∗

o

that is scaled by
√
P to satisfy the power constraint (2).
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Fig. 3. Normalized game outcome of the information provider (the leader)
versus λ compared over various dimensional information. Note that λ = 0
implies the most deceptive, while λ = 1 implies cooperative, information
provider.
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Fig. 4. Normalized game outcome of the decision maker (the follower)
versus λ compared over various dimensional information. Note that the
decision maker’s outcome matches with the information provider’s outcome
when λ = 1, which is the case where both players have the same objective.

IV. ILLUSTRATIVE EXAMPLES

As numerical illustrations, we examine the impact of λ,
e.g., λ = 0, 0.1, . . . , 1, on the outcomes of the game for both
information provider and decision maker when n = 1, 2, 5,
and 10. We set m = 1, Σv = 0.1 I , A = I , P = 1, and
σ2
w = 0.2. We construct the joint covariance matrices of

xxx and θθθ randomly as follows. We draw a number from the
uniform distribution from 0 to 1 for each entry of a matrix D.
Then, we can construct a positive-definite covariance matrix
by Σt = (D+D′)/2+2n I , where the last term ensures that
the constructed matrix is diagonally dominant, and therefore,
positive-definite. For example, for n = 1, we have obtained
[ 2.3233 0.5369
0.5369 2.0456 ].

While examining the game outcomes for various dimen-
sional information, we normalize the objective functions
by Tr{Σx} for illustrative purposes. Furthermore, if the

information provider does not provide any information to the
decision maker, the decision maker could achieve Tr{ΣxR}
by estimating the underlying information as a zero vector.
Therefore, with any additional related information, the de-
cision maker should outperform that. Note that we have set
R = I , therefore, the normalized game outcome would be 1
if the information provider did not disclose any information.

In Figs. 3 and 4, we plot the outcomes of the game versus
λ ∈ [0, 1] and compare for different size information, e.g.,
n = 1, 2, 5, and 10. In the numerical examples, we have
observed that the outcome is worse when the information
provider is the most deceptive than the case he/she is cooper-
ative. This can be attributed to the difficulty of manipulating
the decision maker’s perception about the underlying infor-
mation while being truthful about the disclosed information.
Additionally, the outcome of the information provider peaks
at certain λ, which can be observed more clearly at small
dimensional information disclosure, e.g., n = 1, 2. On the
other side, the outcome for the decision maker is always
worse when the information provider is deceptive. However,
since the information is transmitted over a scalar channel, the
impact of deception relatively decreases as the dimension
of the information increases. This implies that when the
quality of information transmission decreases the ability to
deceive the decision maker also decreases. Correspondingly,
intuitively, in order to avoid effective manipulation on the
decisions made, the decision maker could prefer to acquire
information from different providers over channels with
low signal-to-noise ratio and process centrally instead of
acquiring the information only from one provider at high
quality. We also note that when λ = 1, which is the classical
communication case where the players are cooperating, the
outcomes of both players match.

V. CONCLUSION

In this paper, we have addressed the deceptive multi-
dimensional information disclosure problem over a Gaussian
channel between a deceptive information provider and a
decision maker, which can be viewed as a Stackelberg game,
where the provider is the leader, due to the differences
between the objectives of the provider and the decision
maker, and the reputation constraint for the provider to
sustain his/her business. For multi-variate Gaussian infor-
mation, additive Gaussian noise channel, noisy observations,
and quadratic (different) loss functions, we have analytically
formulated optimal (linear) deception strategies and optimal
decision strategies, and the corresponding outcomes of the
game. We have numerically examined the impact of the
deception and the dimension of the underlying information
on the outcomes of the players.

Some future directions of research on this topic include
analysis of deception strategies in a competitive environment
where there are multiple information providers and the
corresponding optimal information acquisition strategies for
the decision maker for unmanipulated decisions, and also the
formulation of the optimal deception and decision strategies
over vector channels.
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A. Proof of Lemma 1

Since the parameters are zero-mean jointly Gaussian the
conditional expectations with respect to the random variable
yyy are given by

E{xxx|yyy} = E{xxxyyy}E {yyyyyy′}−1
yyy (39)

E{sss|yyy} = E{sssyyy}E {yyyyyy′}−1
yyy. (40)

Yet, the correlation between xxx and yyy can be calculated as

E{xxxyyy} =

∫ ∫
xyfxxxyyy(x, y)dxdy

=

∫ ∫ ∫
xyfxxx(x|s)fsssyyy(s, y)dsdxdy,

where f denotes the (joint) probability density function of
the designated random variable(s), due to the formed Markov
chain. Then,

E{xxxyyy} =

∫ ∫
E{xxx|sss = s}yfsssyyy(s, y)dsdy

=E{xxxsss}E{ssssss′}−1

∫ ∫
syfsssyyy(s, y)dsdy. (41)

By (39) and (40), (41) yields (19). This completes the proof
of the lemma.

B. Proof of Lemma 2

By data processing inequality [19], we have I(xxx; ttt) ≤
I(yyy;zzz). Since all the parameters are jointly Gaussian, the
mutual information has a closed form expression in terms of
second order statistics and we obtain
1

2
log

(
det(Σx) det(Σt)

det(Σxt)

)
≤ 1

2
log

(
det(Σy) det(Σz)

det(Σyz)

)
.

Through the use of the Schur complement to compute
determinant [20], we have

det(Σxt) = det(Σx) det(Σt − ρtxΣ
−1
x ρxt) (42a)

det(Σyz) = det(Σy) det(Σz − ρzyΣ
−1
y ρyz), (42b)

which lead to (21).

C. Proof of Lemma 3

Since every matrix in Φ is a positive semi-definite matrix,
the zero matrix O is an extreme point of Φ. Furthermore,
let P be a matrix in Φ such that P has only one non-
zero eigenvalue, whose value is one. Suppose that there
exist two other matrices M,N ∈ Φ such that P = tM +
(1 − t)N for some t ∈ (0, 1). Let p1, p0 ∈ R

(m+1)n be
eigenvectors of P corresponding to the eigenvalue 1 and
an eigenvalue 0. Note that the eigenvalues of every matrix
in Φ are bounded by 0 and 1 since Tr{M} ≤ 1 while
M � O for all M ∈ Φ. However, the convex combination
implies also that tp′1Mp1 + (1 − t)p′1Np1 = p′1Pp1 = 1
and tp′0Mp0 + (1 − t)p′0Np0 = p′0Pp0 = 0. Therefore,
p′1Mp1 = p′1Np1 = 1 and p′0Mp0 = p′0Np0 = 0, which
yields that p1 and p0 are the eigenvectors of M and N .
Since p0 could be the eigenvector of any arbitrarily chosen
eigenvalue 0, the matrices P,M, and N have the same
eigenvectors and eigenvalues, i.e., P = M = N , which leads
to a contradiction.

Conversely, any other matrix R 
= O, which does not have
a single non-zero eigenvalue 1, in Φ, is not a extreme point.
Consider matrices M and N that have the same eigenvectors
with R. Since R 
= O, R has at least one positive eigenvalue
that is less than 1, say λ ∈ (0, 1). Let M and N also
have the same corresponding eigenvalues with P except
λ. Furthermore, let M have λ + ε and N have λ − ε as
eigenvalues such that λ±ε ∈ [0, 1]. Then, we have the convex
combination R = 1/2M+1/2N while M 
= R and N 
= R,
which implies that R is not an extreme point of Φ.
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